pubsubplus-connector-ogg
User Guide

Solace Corporation

Version 1.0.1

solacee

Table of Contents

Preface
Getting Started
Prerequisites
Quick Start common steps
Quick Start: Running the connector via command line
Quick Start: Running the connector via start.sh script
Quick Start: Running the connector as a Container
Enabling Workflows
Configuring Connection Details
Solace PubSub+ Connection Details
Preventing Message Loss when Publishing to Topic-to-Queue Mappings
Connecting to Multiple Systems
User-configured Header Transforms
User-configured Payload Transforms
Registered Functions
Message Headers
Solace Headers
Reserved Message Headers
Dynamic Producer Destinations
Asynchronous Publishing
Management and Monitoring Connector
Monitoring Connector’s States
Exposed HTTP/HTTPS Endpoints
Health
Workflow Health
Solace Binder Health
Leader Election
Leader Election Modes: Standalone / Active-Active
Leader Election Mode: Active-Standby
Leader Election Management Endpoint
Workflow Management
Workflow Management Endpoint
Workflow States
Metrics
Connector Meters
Add a Monitoring System
Security
Securing Endpoints

© © © W 00 O W N DN N N =

[T N N N N N N N N N N N N S Y
T 9 o R W W N R R RO OO NN NN o G NN R

Exposed Management Web Endpoints
Authentication & Authorization
TLS
Consuming Object Messages
Adding External Libraries
Configuration
Providing Configuration
Converting Canonical Spring Property Names to Environment Variables
Spring Profiles
Configure Locations to Find Spring Property Files
Obtaining Build Information
Spring Configuration Options
Connector Configuration Options
Workflow Configuration Options
Oracle Golden Gate(OGG) Source Configuration Options
Logging
Configuring Logback
License

Support

27
27
28
29
30
31
31
31
31
31
32
32
33
35
36
38
38
39
39

pubsubplus-connector-ogg
Preface

Solace WebSocket Connector

1| Preface solacee

pubsubplus-connector-ogg

Getting Started

Presuming you’re using the default application.yml provided with the download, followone of the
below quick start below to connect to a PubSub+ event broker with the Solace WebSocket. The
quick starts use default credentials as examples to get started with two workflows enabled,
workflow 0 and workflow 1.

Where:

* Workflow 0 consumes messages from the Solace PubSub+ queue, Solace/Queue/0, and publishes
them to the Solace WebSocket producer destination, producer-destination.

* Workflow 1 consumes messages from the Solace WebSocket consumer destination, consumer-
destination, and publishes them to the Solace PubSub+ topic, Solace/Topic/1.

A workflow is the configuration of a flow of messages from a source to a target. The connector
supports up to 20 concurrent workflows per instance.

0 The connector does not provision queues that do not exist.

Prerequisites

¢ Solace PubSub+ Event Broker

» Solace WebSocket

Quick Start common steps

These are the steps that are required to run all quick-start examples:

1. Update the provided samples/config/application.yml with the values for your deployment.

Quick Start: Running the connector via command line

Run:

java -jar pubsubplus-connector-ogg-1.0.1.jar --spring.config.additional-location
=file:samples/config/

By default, this command detects any Spring Boot configuration files as per the
o Spring Boot’s default locations.

For more information, see Configure Locations to Find Spring Property Files.

2 | Getting Started solacee

https://solace.com/products/event-broker/
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files

pubsubplus-connector-ogg

Quick Start: Running the connector via start.sh script

For convenience, you can start the connector through the shell script using the following command:

chmod 744 ./bin/start.sh
./bin/start.sh [-n NAME] [-1 FOLDER] [-p PROFILE] [-c FOLDER] [-ch HOST] [-cp PORT] [
-j FILE] [-em] [-cmh HOST] [-cmp PORT] [-mh HOST] [-mp PORT] [-o OPTIONS] [-b]

The script shows you all errors at the same time:
./bin/start.sh -1 dummy_folder -c dummy_folder -j dummy_file.jar
The script shows you all errors at the same time:

pubsubplus-connector-ogg

Connector startup failed:

Following folder doesn't exists on your filesystem: "dummy_folder'
Following folder doesn't exists on your filesystem: "dummy_folder'
Following file doesn't exists on your filesystem: "dummy_file.jar'

In situations where you have don’t provide a parameter, the script runs with the predefined values
as follows:

Parameter Default Value Description

-n, --name application The name of the connector
instance, that is configured in
[spring.application.name]. This
name impacts on grouping
connectors only.

-1, --1libs ./1libs The directory that contains the
required and optional
dependency JAR files, such as
Micrometer metrics export
dependencies (if configured). If
this option is not specified, it
will use the current ./1ibs/
directory.

3 | Getting Started solacee

Parameter
-p, --profile
-c, --config
-H, --host
-P, --port

-mp, --mgmt_port

-j, --jar

4 | Getting Started

Default Value

empty, no profile is used

./ or current folder

127.0.0.1

8090

9009

pubsubplus-connector-ogg-
1.0.1.jar

pubsubplus-connector-ogg
Description

PThe profile to be used with the
connector’s configuration. The
configuration file named
‘application-<profile>.yml' is
used. If this option is not
specified, no profile is used.

The path to the folder
containing the configuration
files to be applied when the
connector starts up the chosen
profile. If not specified, the
current directory is used.

Specifies the host where the
connector runs.

Specifies the port where
connector runs.

Specifies the management port
for back calls of current
connector from PubSub+
Connector Manager. This
parameter is ignored if the -cm
parameter is not provided.

The path to the specified JAR
file to start the connector. If the
option is not specified, the
default JAR file is used from the
current directory.

solacee

Parameter Default Value
-cm, --manager application

-cmh, --cm_host 127.0.0.1

-cmp, --cm_port 9500

-0, --options no default values
-tls N/A

-s, --show N/A

5 | Getting Started

pubsubplus-connector-ogg
Description

Specifies PubSub+ Connector
Manager to use the
configuration storage and
allows you to enable the cloud
configuration for the connector.
When this parameter is
enabled, you can specify the -mp
or --mgmt_port, -H or --host, and
-cmh with the -cmp parameters,
unless you want to use default
values for those parameters. Be
aware, this option disable listed
parameters to be read from
configuration file. In this case,
the operator must explicitly
specify the parameters for the
script, otherwise defaultdefault
values are used.

Specifies the host where
Connector Manager is running.
This parameter is ignored if the
-cm parameter is not provided.

Specifies the port where
Connector Manager is running.
This parameter is ignored if -cm
parameter is not provided.

Specifies the JVM options used
on when the connector starts.
For example, -Xms64M -Xmx16.

Specifies to use HTTPS instead
of HTTP. . When this parameter
is used, the configuration file
must contain an additional
section with the preconfigured
paths for the key store and trust
store files.

Performs a dry run (does
nothing). The output prints the
start CLI command and its raw
output and exits. This
parameter is useful to check
your parameters without
running the connector.

solacee

pubsubplus-connector-ogg

Parameter Default Value Description

-b, --background N/A Runs the connector in the
background. No logs are shown
and the connector continues
running in detached mode.

-h, --help N/A Prints the help information and
exits.

Script also provides that help information from command line using parameter -h.

More configuration example of starting Connector together with Connector Manager are provided
by the Connector Manager samples.

Quick Start: Running the connector as a Container

The following steps show how to use the sample docker compose file that has been included in the
package:

1. Change to the docker directory:
cd samples/docker

This directory contains both the docker-compose.yml file as well as an .env file that contains
environment secrets required for the container’s health check.

2. Run the connector:
docker-compose up -d

This sample docker compose file will:

- Exposes the connector’s 8090 web port to 8090 on the host.

o Connects a PubSub+ event broker and Solace WebSocket exposed on the host using default
ports.

o Mounts the samples/config directory.
o Mounts the previously defined 1ibs directory.
o Creates a healthcheck user with read-only permissions.
» The default username and password for this user can be found within the .env file.

= This user overrides any users you have defined in your application.yml. See here for
more information.

o

Uses the connector’s management health endpoint as the container’s health check.

For more information about how to use and configure this container, see the connector’s container

6 | Getting Started solacee

https://hub.docker.com/r/solace/solace-pubsub-connector-ogg

pubsubplus-connector-ogg

documentation.

7 | Getting Started solacee

https://hub.docker.com/r/solace/solace-pubsub-connector-ogg

pubsubplus-connector-ogg
Enabling Workflows

The provided application.yml enables workflow 0 and 1. To enable additional workflows, define the
following properties in the application.yml, where <workflow-id> is a value between [0-19]:

spring:
cloud:
stream:
bindings: # Workflow bindings
input-<workflow-id>:
destination: <input-destination> # Queue name
binder: (solace|solace-ws) # Input system
output-<workflow-id>:
destination: <output-destination> # Topic name
binder: (solace|solace-ws) # Output system

solace:
connector:
workflows:
<workflow-id>:
enabled: true

The connector only supports workflows in the directions of:

o e solace — Solace WebSocket

e Solace WebSocket — solace

For more information about Spring Cloud Stream and the Solace PubSub+ binder, see:

» Spring Cloud Stream Reference Guide

* Spring Cloud Stream Binder for Solace PubSub+

8 | Enabling Workflows solacee

https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html
https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter

pubsubplus-connector-ogg

Configuring Connection Details

Solace PubSub+ Connection Details

The Spring Cloud Stream Binder for PubSub+ uses Spring Boot Auto-Configuration for the Solace
Java API to configure its session.

In the application.yml, this typically is configured as follows:

solace:
java:
host: tcp://localhost:55555
msg-vpn: default
client-username: default
client-password: default

For more information and options to configure the PubSub+ session, see Spring Boot Auto-
Configuration for the Solace Java API.

Preventing Message Loss when Publishing to Topic-to-Queue Mappings

If the connector is publishing to a topic that is subscribed to by a queue, messages may be lost if
they are rejected. For example, if queue ingress is shutdown.

To prevent message loss, configure reject-msg-to-sender-on-discard with the including-when-
shutdown flag.

Connecting to Multiple Systems
To connect to multiple systems of a same type, use the multiple binder syntax.

For example:

spring:
cloud:
stream:
binders:

1st solace binder in this example
solacel:
type: solace
environment:
solace:
java:
host: tcp://localhost:55555

2nd solace binder in this example

9 | Configuring Connection Details solacee

https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#multiple-systems

pubsubplus-connector-ogg
solace?2:
type: solace
environment:
solace:
java:
host: tcp://other-host:55555

The only solace-ws binder

solace-ws1:
type: solace-ws
Add ‘environment' property map here if you need to customize this binder.
But for this example, we'll assume that defaults are used.

Required for internal use
undefined:
type: undefined
bindings:
input-0:
destination: <input-destination>
binder: solace-ws1
output-0:
destination: <output-destination>
binder: solacel # Reference 1st solace binder
input-1:
destination: <input-destination>
binder: solace-ws1
output-1:
destination: <output-destination>
binder: solace? # Reference 2nd solace binder

The configuration above defines two binders of type solace and one binder of type solace-ws, which
are then referenced within bindings.

Each binder above is configured independently under spring.cloud.stream.binders.<binder-
name>.environment

* When connecting to multiple systems, all binder configuration must be
specified using the multiple binder syntax for all binders. For example, under
o the spring.cloud.stream.binders.<binder-name>.environment.

* Do not use single-binder configuration (for example, solace.java.* at the root
of your application.yml) while using the multiple binder syntax.

10 | Configuring Connection Details solacee

pubsubplus-connector-ogg
User-configured Header Transforms

Generally, the consumed message’s headers are propagated through the connector to the output
message. If you want to transform the headers, then you can do so as follows:

<workflow-id> : The workflow ID ([0-19])
<header> : The key for the outbound header
<expression> : A SpEL expression which has "headers" as parameters

solace.connector.workflows.<workflow-id>.transform-
headers.expressions.<header>=<expression>

Example 1: To create a new header, new_header, for workflow 0 that is derived from the headers foo
& bar:

solace.connector.workflows.0.transform-headers.expressions.new_header
="T(String).format('%s/abc/%s', headers.foo, headers.bar)"

Example 2: To remove the header, delete_me, for workflow 0, set the header transform expression
to null:

solace.connector.workflows.@.transform-headers.expressions.delete_me="null"

For more information about Spring Expression Language (SpEL) expressions, see Spring Expression
Language (SpEL).

11 | User-configured Header Transforms solacee

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions

pubsubplus-connector-ogg
User-configured Payload Transforms

Message payloads going through a workflow can be transformed using a Spring Expression
Language (SpEL) expression as follows:

<workflow-id> : The workflow ID ([0-19])
<expression> : A SpEL expression

solace.connector.workflows.<workflow-id>.transform-payloads.expressions[@].transform
=<expression>

A SpEL expression may reference:

* payload: To access the message payload.
* headers.<header_name>: To access a message header value.

» Registered functions.

While the syntax uses an array of expressions, only a single transform expression
o is supported in this release. Multiple transform expressions may be supported in
the future.

Registered Functions

Registered functions are built-in and can be called directly from SpEL expressions. To call a
registered function, use the # character followed by the function name. The following table
describes the available registered functions:

Registered Function Signature Description

boolean isPayloadBytes(Object obj) Returns whether the object obj is an instance of
byte[] or not.

Sample usage of this function within a SpEL

expression: "#isPayloadBytes(payload) ? true :
false"

Example 1: To normalize byte[] and String payloads as upper-cased String payloads or leave
payloads unchanged when of different types:

solace.connector.workflows.@.transform-payloads.expressions[@].transform
="#isPayloadBytes(payload) ? new String(payload).toUpperCase() : payload instanceof
T(String) ? payload.toUpperCase() : payload"

Example 2: To convert String payloads to byte[] payloads using a charset retrieved from a message
header or leave payloads unchanged when of different types:

12 | User-configured Payload Transforms solacee

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions-ref-functions

pubsubplus-connector-ogg

solace.connector.workflows.0.transform-payloads.expressions[@].transform="payload
instanceof T(String) ?
payload.getBytes(T(java.nio.charset.Charset).forName(headers.charset)) : payload"

For more information about Spring Expression Language (SpEL) expressions, see Spring Expression
Language (SpEL).

13 | User-configured Payload Transforms solacee

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions

pubsubplus-connector-ogg

Message Headers

Solace and solace-ws headers can be created or manipulated using the User-configured Header
Transforms feature described above.

Solace Headers

Solace headers exposed to the connector are documented in the Spring Cloud Stream Binder for
Solace PubSub+ documentation.

Reserved Message Headers

The following are reserved header spaces:

* solace_
e scst
* Any headers defined by the core Spring messaging framework. See Spring Integration: Message

Headers for more info.

Any headers with these prefixes (that are not defined by the connector or any technology used by
the connector) may not be backwards compatible in future releases of this connector.

14 | Message Headers solacee

https://github.com/SolaceDev/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#solace-message-headers
https://github.com/SolaceDev/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#solace-message-headers
https://docs.spring.io/spring-integration/reference/html/message.html#message-headers
https://docs.spring.io/spring-integration/reference/html/message.html#message-headers

pubsubplus-connector-ogg
Dynamic Producer Destinations

To route messages to dynamic destinations at runtime, use the User-configured Header Transforms
feature to set the following headers:

Header Name Type Values Applies Description
To
scst_targetDestination string Any valid Solace, Specifies the name of the

destination name Solace dynamic destination to
WebSoc publish to. Setting this
ket header overrides the
configured destination.

solace_scst_targetDestinati string (queue|topic) Solace Specifies the destination
onType type of the dynamic
destination.

When unspecified, the
configured or default
destination type is used.

Setting the scst_targetDestination header under
solace.connector.default.workflow.transform-headers may not be viable if not all
workflows follow the same direction.

15 | Dynamic Producer Destinations solacee

pubsubplus-connector-ogg
Asynchronous Publishing

This connector does not support asynchronous publishing. Publish acknowledgments are resolved
synchronously for all workflows regardless of the config option:

<workflow-id> : The workflow ID ([0-19])

solace.connector.workflows.<workflow-1id>.acknowledgment.publish-async=(true|false)

Enabling publish-async enable asynchronous publishing on the connector’s core,
but the effective publishing mode is still synchronous because there is no support
for this feature on either the consumer binding or the producer binding.

16 | Asynchronous Publishing solacee

pubsubplus-connector-ogg

Management and Monitoring Connector

Monitoring Connector’s States

The connector provides an ability to monitor its internal states through exposed endpoints
provided by Spring Boot Actuator.

An Actuator shares information through the endpoints reachable over HTTP/HTTPS. The endpoints
that are available are configured in the connector configuration file.

What endpoints are available is configured in the connector configuration file:

management:
simple:
metrics:
export:
enabled: true
endpoints:
web:
exposure:
include:
"health,metrics,loggers,logfile,channels,env,workflows,leaderelection,bindings,info"

The above sample configuration enables metrics collection through the configuration parameter of
management.simple.metrics.export.enabled set to true and then shares them through the
HTTP/HTTPS endpoint together with other sections configured for the current connector.

Exposed HTTP/HTTPS Endpoints

The set of endpoints exposed through the HTTP/HTTPS endpoint.

* Exposed endpoints are available if you query the endpoints using the web interface (for
example https://localhost:8090/actuator/<some_endpoint>) and also available in PubSub+
Connector Manager.

» The operator may choose to not expose all or some of these endpoints. If so, the Actuator
endpoints that are not exposed are not visible if you query the endpoints (for example,
https://localhost:8090/actuator/<some_endpoint>) nor in PubSub+ Connector Manager.

The simple metrics registry is only to be used for testing. It is not a production-
ready means of collecting metrics. In production, use a dedicated monitoring
system (for example, Datadog, Prometheus, etc.) to collect metrics.

The Actuator endpoint now contains information about Connector’s internal states shared over the
following HTTP/HTTPS endpoint:

GET: /actuator/

17 | Management and Monitoring Connector solacee

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#actuator

pubsubplus-connector-ogg

The following shows an example of the data shared with the configuration above:

{
" links": {
"self": {
"href": "/actuator",
"templated": false
H
"workflows": {
"href": "/actuator/workflows",
"templated": false
Iy
"workflows-workflowId": {
"href": "/actuator/workflows/{workflowId}",
"templated": true
I
"leaderelection": {
"href": "/actuator/leaderelection”,
"templated": false
+
"health-path": {
"href": "/actuator/health/{*path}",
"templated": true
Iy
"health": {
"href": "/actuator/health",
"templated": false
I
"metrics": {
"href": "/actuator/metrics",
"templated": false
H
"metrics-requiredMetricName": {
"href": "/actuator/metrics/{requiredMetricName}",
"templated": true
}
}
}

18 | Management and Monitoring Connector solacee

pubsubplus-connector-ogg

Health

The connector reports its health status using the Spring Boot Actuator health endpoint.
To configure the information returned by the health endpoint, configure the following properties:

* management.endpoint.health.show-details

* management.endpoint.health.show-components
For more information, about health endpoints, see Spring Boot documentation.

Health for the workflow, Solace binder, and solace-ws binder components are exposed when
management.endpoint.health.show-components is enabled. For example:

management:
endpoint:
health:
show-components: always
show-details: always

This configuration would always show the full details of the health check including the workflows
and binders. The default value is never.

Workflow Health

A workflows health indicator is provided to show the health status for each of a connector’s
workflows. This health indicator has the following form:

{
"status": "(UP|DOWN)",
"components": {
"<workflow-id>": {
"status": "(UP|DOWN)",
"details": {
"error": "<error message>'

}
}
}
}
Health Status Description
UP A status that indicates the workflow is functioning as expected.
DOWN A status that indicates the workflow is unhealthy. Operator intervention

may be required.

19 | Health solacee

https://docs.spring.io/spring-cloud-stream/docs/3.2.2/reference/html/spring-cloud-stream.html#_health_indicator
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints.health

pubsubplus-connector-ogg

®

no

¥

not paus))
workflow state? p E'g- fail-ower in progress?

paused CE

leader-election state?

active

workflow state? running stopped

not running not stoppe

health=DOWN | health=DOWN |
J J

e | e

Y

.?{

UP or RECONNECTING or UNKNOWHN

b

L

v

workflow's overall binders'fhindings' states?

2

“
| health=DOWN |
? Y
| health=UPp |
- o

Figure 1. Workflow Health Resolution Diagram

This health indicator is enabled default. To disable it, set the property as follows:

management.health.workflows.enabled=false

Solace Binder Health

For details, see the Solace binder documentation.

20 | Health solacee

https://github.com/SolaceDev/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#solace-binder-health-indicator

pubsubplus-connector-ogg
Leader Election

The connector has three leader election modes for redundancy:

Leader Election Mode Description

Standalone (Default) A single instance of a connector without any leader election capabilities.

Active-Active A participant in a cluster of connector instances where all instances are
active.
Active-Standby A participant in a cluster of connector instances where only one instance

is active (i.e. the leader), and the others are standby.

Operators can configure the leader election mode by setting the following configuration:

solace.connector.management.leader-election.mode
=(standalone|active_active|active_standby)

Leader Election Modes: Standalone / Active-Active

When the connector starts, all enabled workflows start at the same time. The connector itself is
considered as always active.

Leader Election Mode: Active-Standby

If the connector is in active-standby mode, a PubSub+ management session and management queue
must be configured as follows:

solace.connector.leader-election.mode=active_standby

Management session

Exact same interface as solace.java.*
solace.connector.management.session.host=<management-host>
solace.connector.management.session.msgVpn=<management-vpn>
solace.connector.management.session.client-username=<client-username>
solace.connector.management.session.client-password=<client-password>
solace.connector.management.session.<other-property-name>=<value>

Management queue name accessible by the management session
Must have exclusive access type
solace.connector.management.queue=<management-queue-name>

To determine if the connector is active or standby, it creates a flow to the management queue. If this
flow is active, then the connector’s state is active and will start its enabled workflows. Otherwise, if
this flow is inactive, then the connector’s state is standby and will stop its enabled workflows.

21 | Leader Election solacee

pubsubplus-connector-ogg

At a macro level for a cluster of connectors, failover only happens when there are infrastructure
failures (for example, the JVM goes down or networking failures to the management queue).

IIf a workflow fails to start or stop during failover, it will retry up to some maximum defined by the
configuration option, solace.connector.management.leader-election.fail-over.max-attempts.

During failover, the connector attempts to start or stop all enabled workflows. After an attempt has
been made to start or stop each workflow, the connector transitions to the active/standby mode
regardless of the status of the workflows.

Leader Election Management Endpoint

A custom leaderelection management endpoint was provided using Spring Actuator.

Operators can navigate to the connector’s leaderelection management endpoint to view its leader
election status.

Endpoint Operation Payloads
/leaderelection Read Request: None.
(HTTP GET)
Response:
{
"mode": {
"type": "(standalone |

active_active | ©)
active_standby)",
"state": "(active | standby)", @
"source": { ®
"queue": "<management-queue-name>",
"host": "<management-host>",
“msgVpn": "<management-vpn>"
¥
}
¥

@ Mandatory parameter in output
@ Mandatory parameter in output

® Optional section. Appears only when type is set to
active_standby.

22 | Leader Election solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints

pubsubplus-connector-ogg

Workflow Management

Workflow Management Endpoint

A custom workflows management endpoint using Spring Actuator is provided to manage workflows.

To enable the workflows management endpoint:

management:
endpoints:
web:
exposure:
include: "workflows"

Once the workflows management endpoint is enabled, the following operations can be performed:

Endpoint Operation Payloads
/workflows Read Request: None.
(HTTP GET)
Response:

Same payload as the /workflows/{workflowId} read
operation, but as a list of all workflows.

/workflows/{workflowId} Read Request: None.
(HTTP GET)
Response:
{

"id": "<workflowId>",
"enabled": (true|false),
"state": "(running|stopped|paused|unknown)",
"inputBindings": [
"<input-binding>"
1,
"outputBindings": [
"<output-binding>"

]
}
/workflows/{workflowId} Write Request:
(HTTP POST)
{
"state": "STARTED|STOPPED|PAUSED|RESUMED"
}

Response: None.

23 | Workflow Management solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints

pubsubplus-connector-ogg

o Only workflows with Solace PubSub+ consumers (where the solace binder is
defined in the input-#) support pause/resume.

Some features require for the connector to manage workflow lifecycles. There’s no
guarantee that workflow states continue to persist when write operations are used
to change the workflow states while such features are in use.

o For example: When the connector is configured in the active-standby leader
election mode, workflows will automatically transition from running to stopped
when the connector fails over from active to standby. Vice-versa for a failover in
the opposite direction.

Workflow States

A workflow’s state is defined as the aggregate states of its bindings (see the bindings management
endpoint) as follows:

Workflow State Condition

running All bindings have state="running".

stopped All bindings have state="stopped".

paused All consumer bindings and all pausable producer bindings have

state="paused".

unknown None of the other states. Represents an inconsistent aggregate
binding state.

When the producer or consumer binding is not implementing Spring’s Lifecycle
interface, Spring always reports the bindings as state=N/A. The state=N/A is ignored

o when deciding the overall state of the workflow. For example, if the consumer’s
binding is state=running and producer’s binding state=N/A (or vise-versa), the
workflow state would be running.

For more information about binding states, see Spring Cloud Stream: Binding visualization and
control.

24 | Workflow Management solacee

https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator

pubsubplus-connector-ogg

Metrics

This connector uses Spring Boot Metrics that leverages Micrometer to manage its metrics.

Connector Meters

In addition to the meters already provided by the Spring framework, this connector introduces the
following custom meters:

Name Type Tags Descripti Notes

on
solace.connector.pro Timer type: channel The This meter is a rename of
cess

o processin spring.integration.send whose
name: <bindingName>

g time. name tag matches a binding
result: name.
(success|failure)
exception:
(none|exception
simple class name)
solace.connector.err Timer type: channel The error This meter is a rename of
Or.process o processin spring.integration.send whose
name: <bindingNames> ~ . .
g time. name tag matches an input
result: binding’s error channel name
(success|failure) (<destination>.<group>.errors).
exception: Meters might be merged under

(none|exception

_ the same name tag (delimited by
simple class name)

|) if multiple bindings have the
same error channel name (for
example, bindings can have a
matching destination, group, or
both). NOTE: Setting a
binding’s group is not

supported.
solace.connector.mes Distribut name: <bindingName> The
sage.size.payload ionSummar message
y payload
size.
Base
Units:
bytes

25 | Metrics solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics
https://docs.spring.io/spring-integration/docs/current/reference/html/system-management.html#overview
https://docs.spring.io/spring-integration/docs/current/reference/html/system-management.html#overview

pubsubplus-connector-ogg

Name Type Tags Descripti Notes
on

solace.connector.mes Distribut name: <bindingName> The total

sage.size.total ionSummar message
y size.
Base
Units:
bytes
solace.connector.pub Counter name: <bindingName> The
lish.ack publish
result:
Base : acknowle
_ (success|failure)
Units: dgment
acknowled exception: count.
gments (none |exception

simple class name)

The solace.connector.process meter with result=failure is not a reliable measure
of tracking the number of failed messages. It only tells you how many times a step
processed a message, how long it took to process that message, and if that step

o completed successfully.

Instead, we recommend that you use a combination of
solace.connector.error.process and solace.connector.publish.ack to track failed
messages.

Add a Monitoring System

By default, this connector includes the following monitoring systems:

* Datadog

* Dynatrace

* Influx

« JMX

* OpenTelemetry (OTLP)

StatsD

To add additional monitoring systems, add the system’s micrometer-registry-<system> JAR file and
its dependency JAR files to the connector’s classpath. The included systems can then be individually
enabled/disabled by setting management.<system>.metrics.export.enabled=true in the
application.yml.

26 | Metrics solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.datadog
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.dynatrace
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.influx
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.jmx
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.otlp
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.statsd

pubsubplus-connector-ogg

Security

Securing Endpoints

Exposed Management Web Endpoints

There are many endpoints that are automatically enabled for this connector. For a comprehensive
list, see Management and Monitoring Connector.

The health endpoint only returns the root status by default (i.e. no health details).

To enable other management endpoints, see Spring Actuator Endpoints.

Authentication & Authorization
This release of the connector only supports basic HTTP authentication.

By default, no users are created unless the operator configures them in their configuration file. The
configuration parameters responsible for security are as follows:

solace:
connector:
security:
enabled: true
users:
- name: user]

password: pass
- name: adminl

password: admin

roles:

- admin

In the above example, we have created two users:

* userl: Has access to perform GET (Read) requests.

* adminl: Has access to perform GET and POST (Read & Write) requests.

To fully disable security and permit anyone to access the connector’s web endpoints, operators can
configure the solace.connector.security.enabled parameter false.

o While these properties could be defined in an application.yml file, we recommend
that you use environment variables to set secret values.

The following example shows you how to define users using environment variables:

Create user with no role (i.e. read-only)
SOLACE_CONNECTOR_SECURITY_USERS_@ NAME=user1

27 | Security solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints

pubsubplus-connector-ogg

SOLACE_CONNECTOR_SECURITY_USERS_@_PASSWORD=pass

Create user with admin role

SOLACE_CONNECTOR_SECURITY_USERS_1_NAME=admin1

SOLACE_CONNECTOR_SECURITY_USERS_ 1 PASSWORD=admin

SOLACE_CONNECTOR_SECURITY_USERS_1_ROLES_@=admin
In the above example, we have created two users:

» userl: Has access to perform GET (Read) requests.

* adminl: Has access to perform GET and POST (Read & Write) requests.

solace.connector.security.users is a list. When users are defined in multiple
sources (different application.yml files, environment variables, and so on),
overriding works by replacing the entire list. In other words, you must pick one

o place to define all your users, whehter in a single application properties file or as
environment variables.

For more information, see Spring Boot - Merging Complex Types.

TLS
TLS is disabled by default.

To configure TLS, see Spring Boot - Configure SSL and TLS Setup in Spring.

28 | Security solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties.merging-complex-types
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.webserver.configure-ssl
https://www.baeldung.com/spring-tls-setup

pubsubplus-connector-ogg
Consuming Object Messages

For the connector to process object messages, it needs access to the classes which define the object
payloads.

Assuming that your payload classes are in their own project(s) and are packaged into their own
jar(s), place these jar(s) and their dependencies (if any) onto the connector’s classpath.

O It is recommended that these jars only contain the relevant payload classes to
- prevent any oddities.

In the jar(s), your class files must be archived in the same directory/classpath as
the application that publishes them.

e.g. If the source application is publishing a message with payload type,
O MySerializablePayload, defined under classpath com.sample.payload, then when
- packaging the payload jar for the connector, the MySerializablePayload class must
still be accessible under the com.sample.payload classpath.

Typically, build tools such as Maven or Gradle will handle this when packaging
jars.

29 | Consuming Object Messages SOlaceo

pubsubplus-connector-ogg

Adding External Libraries

The connector jar uses the loader.path property as the recommended mechanism for adding
external libraries to the connector’s classpath.

See Spring Boot - PropertiesLauncher Features for more info.

To add libraries to the connector’s container image, see the connector’s container documentation.

30 | Adding External Libraries solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.property-launcher
https://hub.docker.com/r/solace/solace-pubsub-connector-ogg

pubsubplus-connector-ogg

Configuration

Providing Configuration

For information about about how the connector detects configuration properties, see Spring Boot:
Externalized Configuration.

Converting Canonical Spring Property Names to Environment Variables

For information about converting the Spring property names to environment variables, see the
Spring documentation.

Spring Profiles

If multiple configuration files exist within the same configuration directory for use in different
environments (development, production, etc.), use Spring profiles.

Using Spring profiles allow you to define different application property files under the same
directory using the filename format, application-{profile}.yml.

For example:
» application.yml: The properties in non-specific files that always apply. Its properties are
overridden by the properties defined in profile-specific files.
* application-dev.yml: Defines properties specific to the development environment.

* application-prod.yml: Defines properties specific to the production environment.
Individual profiles can then be enabled by setting the spring.profiles.active property.

See Spring Boot: Profile-Specific Files for more information and an example.

Configure Locations to Find Spring Property Files

By default, the connector detects any Spring property files as described in the Spring Boot’s default
locations.

 If you want to add additional locations, add --spring.config.additional-location=file:<custom
-config-dir> (This parameter is similar to the example command in Quick Start: Running the
connector via command line).

 If you want to exclusively use the locations that you’ve defined and ignore Spring Boot’s default
locations, add
--spring.config.location=optional:classpath:/,optional:classpath:/config/,file:<custom
-config-dir>.

For more information about configuring locations to find Sprint property files, see Spring Boot
documentation.

31 | Configuration solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties.relaxed-binding.environment-variables
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.profile-specific
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files

pubsubplus-connector-ogg

If you want configuration files for multiple, different connectors within the same
config directory for use in different environments (such as development,
production, etc.), we recommend that you use Spring Boot Profiles instead of child
directories. For example:
» Set up your configuration like this:
o config/application-prod.yml
(;) o config/application-dev.yml
- * Do not do this:
o config/prod/application.yml
o config/dev/application.yml
Child directories are intended to be used for merging configuration from multiple
sources of configuration properties. For more information and an example of

when you might want to use multiple child directories to compose your
application’s configuration, see the Spring Boot documentation.

Obtaining Build Information

Build information, including version, build date, time and description is enabled by default via
Spring Boot Actuator Info Endpoint. By default, every connector shares all information related to its
build only.

Below is the structure of the output data:

{
"build": {
"version": "<connector version>",
"artifact": "<connector artifact>",
"name": "<connector name>",
"time": "<connector build time>",
"group": "<connector group>",
"description”: "<connector description>",
"support": "<support information>"
}
¥

If you want to exclude build data from the output of the info endpoint, set
management.info.build.enabled to false.

Alternatively, if you want to disable the info endpoint entirely, you can remove 'info' from the list of
endpoints specified in management.endpoints.web.exposure.include.

Spring Configuration Options

This connector packages many libraries for you to customize functionality. Here are some
32 | Configuration solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.profile-specific
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.wildcard-locations
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/#info
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/#info.retrieving.response-structure.build

references to get started:

» Spring Cloud Stream

* Spring Cloud Stream Binder for Solace PubSub+

* Spring Logging
* Spring Actuator Endpoints

* Spring Metrics

Connector Configuration Options

pubsubplus-connector-ogg

he following table lists the configuration options. The following options in Config Option are

prefixed with solace.connector.:

Config Option Type
management.leader- int
election.fail-over.max-

attempts

management.leader- long

election.fail-over.back-
off-initial-interval

management.leader- long
election.fail-over.back-
off-max-interval

management.leader- double
election.fail-over.back-
off-multiplier

33 | Configuration

Valid Values Default

>0

>= 1.0

Value
3

1000

10000

Description

The maximum number of
attempts to perform a fail-
over.

The initial interval
(milliseconds) to back-off
when retrying a fail-over.

The maximum interval
(milliseconds) to back-off
when retrying a fail-over.

The multiplier to apply to
the back-off interval
between each retry of a
fail-over.

solacee

https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_configuration_options
https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#configuration-options
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.logging
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics

Config Option Type
management.leader- enum
election.mode

management.queue string
management.session.*
security.enabled boolean

security.users[<index>].na string
me

security.users[<index>].pa string
ssword

security.users[<index>].ro list<string>
les

34 | Configuration

Valid Values Default
Value

(standalone| standalone

active_activ

e|active_sta

ndby)

any null

See Spring

Boot Auto-

Configuratio

n for the

Solace Java

API

(true|false) true

any null

any null

admin empty list
(i.e. read-
only)

pubsubplus-connector-ogg

Description

The connector’s leader
election mode.

standalone:

A single instance of a
connector without any
leader election capabilities.

active_active:

A participant in a cluster of
connector instances where
all instances are active.

active_standby:

A participant in a cluster of
connector instances where
only one instance is active
(i.e. the leader), and the
others are standby.

The management queue
name.

Defines the management
session. This has the same
interface as that used by
solace.java.*.

See Spring Boot Auto-
Configuration for the
Solace Java API for more
info.

If true, security is enabled.
Otherwise, anyone has
access to the connector’s
endpoints.

The name of the user.

The password for the user.
The list of roles that the
specified user has. It has

read-only access if no roles
are returned.

solacee

https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties

Workflow Configuration Options

These configuration options are defined under the following prefixes:

pubsubplus-connector-ogg

* solace.connector.workflows.<workflow-id>.: If the options support per-workflow configuration

and the default prefixes.

* solace.connector.default.workflow.: If the options support default workflow configuration.

Config Option Applicable Type
Scopes

enabled Per- boolean
Workflow

transform- Per- Map<string

headers.expressions Workflow :String>
Default

acknowledgment.publish Per-
-async Workflow
Default

35 | Configuration

boolean

Valid
Values

(true|fals
e)

Key:
A header
name.

Value:

A SpEL
string that
accepts
headers as
parameter
S.

(true|fals
e)

Default
Value

false

empty map

false

Description

If true, the workflow is
enabled.

A mapping of header
names to header value
SpEL expressions.

The SpEL context
contains the headers
parameter that can be
used to read the input
message’s headers.

If true, publisher
acknowledgment
processing is done
asynchronously.

The workflow’s
consumer and
producer bindings
must support this
mode, otherwise the
publisher
acknowledgments are
processed
synchronously
regardless of this
setting.

solacee

Config Option

acknowledgment.back-
pressure-threshold

Applicable Type

Scopes

Per-

Workflow

Default

acknowledgment.publish Per-

-timeout

Workflow

Default

Valid Default
Values Value
>=1 255

>=-1 600000

include::../../../snippets/attributes/common.adoc

pubsubplus-connector-ogg

Description

The maximum number
of outstanding
messages with
unresolved
acknowledgments.
Message consumption
is paused when the
threshold is reached to
allow for producer
acknowledgments to
catch up.

The maximum amount
of time (in millisecond)
to wait for
asynchronous
publisher
acknowledgments
before considering a
message as failed. A
value of -1 means to
wait indefinitely for
publisher
acknowledgments.

Oracle Golden Gate(OGG) Source Configuration

Options

These configuration options are all prefixed by spring.cloud.stream.solace-ogg.bindings.<input-

X>.consumer:

Config Option

url

username
password
topic

dmlTopic

36 | Configuration

Type

string

string
string

string

string

Valid Values Default
Value
ws:// or

wss://
location

Description

ogg service url

0gg service username
0gg service password

default topic for ogg data
change event

topic for ogg dml event

solacee

Config Option

objectTopic

lvq

lvqTopic

include-metadata-in-
payload

bridgeDmlSchema

bridgeObjectSchema

useSSL

userKeyStorePath

userKeyStorePassword

trustStorePath

trustStorePassword

headers

37 | Configuration

Type

string

string

string

boolean

boolean

boolean

boolean

string

string

embedding

embedding

map

Valid Values Default
Value

false

false

false

false

pubsubplus-connector-ogg

Description

topic for ogg
OBJECT_METADATA event

a solace lvq which hold the
last succeed event

lvq topic

if true, the whole ogg
message will be sent to
solace as payload ,
otherwise only the content
of node "after" appears in
the payload, only used with
data change event

if true, dmlTopic will take
effect, dml events will be
sent to solace

if true, objectTopic will
take effect,
OBJECT_METADATA events
will be sent to solace

if enable ssl to
authorization

the user key store file path,
available only if useSSl was
true

the user key store
password, available only if
useSS] was true

the trust store file path,
available only if useSSl was
true

the trust store password,
available only if useSSl was
true

custom headers with ogg

json node. eg.
msg_header_op_type:
op_type

solacee

pubsubplus-connector-ogg
Logging
Configuring Logbhack

If you require Logback configuration beyond what is already available through Spring config
properties, then you can decide to run your connector with a logback-spring.xml file. For
information about using the logback, see:

* logging.config spring property.
» Logging
* Configure Logback for Logging sections in the Spring documentation.

The main difference compared to what Spring Boot provides, is that this connector provides its own
alternative loghack configuration files that can be included into your logback-spring.xml fie.

These new files can be included and are found at com/solace/connector/core/logging/logback/:

defaults.xml

Provides conversion rules, pattern properties and common logger configurations.

Always include defaults.xml

We recommend that you always include this file in your logback-spring.xml file
(;) as it includes a %sanitize <conversionRule> that’s applied to the default
CONSOLE_LOG_PATTERN and FILE_LOG_PATTERN.

This conversion rule does some filtering to obfuscate potentially sensitive data
from the logs.

console-appender.xml
Adds a ConsoleAppender using the CONSOLE_LOG_PATTERN.

file-appender.xml

Adds a RollingFileAppender using the FILE_LOG_PATTERN and ROLLING_FILE_NAME_PATTERN with
appropriate settings.

Aside from these new include-able files, this connector still supports all the same logging options
that regular Spring Boot does.

For more information and examples, see the Configure Loghack for Logging section in the Spring
documentation.

38 | Logging solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.logging.custom-log-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.logging.custom-log-configuration
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.logging
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.logging.logback
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.logging.logback
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.logging.logback

pubsubplus-connector-ogg
License

This project is licensed under the Solace Community License, Version 1.0. - See the LICENSE file for
details.

Support
Support is offered best effort via our Solace Developer Community.

Premium support options are available, please Contact Solace.

39 | License solacee

https://solace.community/
https://solace.com/contact-us

	pubsubplus-connector-ogg: User Guide
	Table of Contents
	Preface
	Getting Started
	Prerequisites
	Quick Start common steps
	Quick Start: Running the connector via command line
	Quick Start: Running the connector via start.sh script
	Quick Start: Running the connector as a Container

	Enabling Workflows
	Configuring Connection Details
	Solace PubSub+ Connection Details
	Preventing Message Loss when Publishing to Topic-to-Queue Mappings

	Connecting to Multiple Systems

	User-configured Header Transforms
	User-configured Payload Transforms
	Registered Functions

	Message Headers
	Solace Headers
	Reserved Message Headers

	Dynamic Producer Destinations
	Asynchronous Publishing
	Management and Monitoring Connector
	Monitoring Connector’s States
	Exposed HTTP/HTTPS Endpoints

	Health
	Workflow Health
	Solace Binder Health

	Leader Election
	Leader Election Modes: Standalone / Active-Active
	Leader Election Mode: Active-Standby
	Leader Election Management Endpoint

	Workflow Management
	Workflow Management Endpoint
	Workflow States

	Metrics
	Connector Meters
	Add a Monitoring System

	Security
	Securing Endpoints
	Exposed Management Web Endpoints
	Authentication & Authorization
	TLS

	Consuming Object Messages
	Adding External Libraries
	Configuration
	Providing Configuration
	Converting Canonical Spring Property Names to Environment Variables
	Spring Profiles
	Configure Locations to Find Spring Property Files
	Obtaining Build Information

	Spring Configuration Options
	Connector Configuration Options
	Workflow Configuration Options
	Oracle Golden Gate(OGG) Source Configuration Options

	Logging
	Configuring Logback

	License
	Support

