Solace PubSub+ Connector for IBM MQ

User Guide

Solace Corporation

Version 2.9.2

solacee

Table of Contents

Preface
Getting Started
Prerequisites
Quick Start common steps
Quick Start: Running the connector via command line
Quick Start: Running the connector via start.sh script
Quick Start: Running the connector as a Container
Enabling Workflows
Configuring Connection Details
Solace PubSub+ Connection Details
Preventing Message Loss when Publishing to Topic-to-Queue Mappings
IBM MQ Connection Details
Manual Configuration
JNDI
Secure Connection
Connecting to Multiple Systems
Message Batching
Batching and Metrics
User-configured Header Transforms
User-configured Payload Transforms
Registered Functions
Message Headers
Solace Headers
JMS Message Headers
JMS Headers
JMS Binder Headers
Reserved Message Headers
JMS Destination Types
JMS Shared Durable Subscribers
Dynamic Producer Destinations
Asynchronous Publishing
Management and Monitoring Connector
Monitoring Connector’s States
Exposed HTTP/HTTPS Endpoints
Health
Workflow Health
Solace Binder Health
JMS Binder Health

O© 00 00 00 00 00 N O W N N DD N =

N DN NN DN DN DN DN NN R R = = = = = e) s s
N 3 OO Ok bR R WON RO 000NN N NN U aw NN DO o

Leader Election
Leader Election Modes: Standalone / Active-Active
Leader Election Mode: Active-Standby
Leader Election Management Endpoint
Workflow Management
Workflow Management Endpoint
Workflow States
Metrics
Connector Meters
Add a Monitoring System
Security
Securing Endpoints
Exposed Management Web Endpoints
Authentication & Authorization
TLS
Consuming Object Messages
Adding External Libraries
Configuration
Providing Configuration
Converting Canonical Spring Property Names to Environment Variables
Spring Profiles
Configure Locations to Find Spring Property Files
Obtaining Build Information
Spring Configuration Options
JMS Binder Configuration Options
JMS Consumer Options
JMS Producer Options
Connector Configuration Options
Workflow Configuration Options
License

Support

29
29
29
30
31
31
32
33
33
34
36
36
36
36
37
38
39
40
40
40
40
40
41
41
42
42
44
45
46
49
49

Solace PubSub+ Connector for IBM MQ
Preface

Solace PubSub+ Connector for IBM MQ bridges data between the Solace PubSub+ Event Broker and
IBM MQ providing a flexible and efficient way to integrate IBM MQ application data with your
Solace-backed, event-driven architecture and the Event Mesh. The connector is deployable
standalone or in redundancy modes of “active-standby” or “active-active” to allow for high-
availability and horizontal scaling of your data movement. Each connector instance supports up to
20 individual workflows (source-to-target pipeline), minimizing the number of connector instances
deployed and managed. The use of various Spring Framework technologies allows for easy
configuration of the connector, advanced logging capabilities, and export of live metrics data to
external monitoring solutions.

1| Preface solacee

Solace PubSub+ Connector for IBM MQ
Getting Started

Presuming you’re using the default application.yml within this package, following one of the below
quick start guides will result in a connector that will connect to the PubSub+ broker and IBM MQ
broker using default credentials, with 2 workflows enabled, workflow 0 and workflow 1. Where:

* Workflow 0 is consuming messages from the Solace PubSub+ queue, Solace/Queue/0, and
publishing them to the IBM MQ topic, topic.

* Workflow 1 is consuming messages from the IBM MQ queue, DEV.QUEUE.1, and publishing them
to the Solace PubSub+ topic, Solace/Topic/1.

A workflow is the configuration of a flow of messages from a source to a target. The connector
supports up to 20 concurrent workflows per instance.

o The connector will not provision queues which do not exist.

Prerequisites

e Solace PubSub+ Event Broker

« IBM MQ

Quick Start common steps

These are the steps that are required to run all quick-start examples:

1. Create a directory called 1ibs in the same directory as the jar file.
a. For more info about this directory, see Adding External Libraries.
b. This directory may already exist
2. Download the jars for the IBM MQ Client and all its dependencies to the 1ibs directory:

a. https://central.sonatype.com/artifact/com.ibm.mqg/com.ibm.mq.jakarta.client (tested with
9.4.1.1)

3. Update the provided samples/config/application.yml with the values for your deployment.

Quick Start: Running the connector via command line

Run:

java -Dloader.path=1ibs/ -jar pubsubplus-connector-ibmmg-2.9.2.jar --
spring.config.additional-location=file:samples/config/

By default, this command detects any Spring Boot configuration files as per the
o Spring Boot’s default locations.

2 | Getting Started solacee

https://solace.com/products/event-broker/
https://www.ibm.com/products/mq
https://central.sonatype.com/artifact/com.ibm.mq/com.ibm.mq.jakarta.client
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files

Solace PubSub+ Connector for IBM MQ
For more information, see Configure Locations to Find Spring Property Files.

Quick Start: Running the connector via start.sh script

For convenience, you can start the connector through the shell script using the following command:

chmod 744 ./bin/start.sh
./bin/start.sh [-n NAME] [-1 FOLDER] [-p PROFILE] [-c FOLDER] [-ch HOST] [-cp PORT] [
-j FILE] [-em] [-emh HOST] [-emp PORT] [-mh HOST] [-mp PORT] [-o OPTIONS] [-b]

The script shows you all errors at the same time:
./bin/start.sh -1 dummy_folder -c dummy_folder -j dummy_file.jar
The script shows you all errors at the same time:

Solace PubSub+ Connector for IBM MQ

Connector startup failed:

Following folder doesn't exists on your filesystem: "dummy_folder'
Following folder doesn't exists on your filesystem: "dummy_folder'
Following file doesn't exists on your filesystem: "dummy_file.jar'

In situations where you don’t provide a parameter, the script runs with the predefined values as
follows:

Parameter Default Value Description

-n, --name application The name of the connector
instance, that is configured in
[spring.application.name]. This
name impacts on grouping
connectors only.

-1, --1libs ./1ibs The directory that contains the
required and optional
dependency JAR files, such as
Micrometer metrics export
dependencies (if configured). If
this option is not specified, it
will use the current ./1ibs/
directory.

3 | Getting Started solacee

Solace PubSub+ Connector for IBM MQ

Parameter Default Value Description

-p, --profile empty, no profile is used The profile to be used with the
connector’s configuration. The
configuration file named
‘application-<profile>.yml' is
used. If this option is not
specified, no profile is used.

-c¢, --config ./ or current folder The path to the folder
containing the configuration
files to be applied when the
connector starts up the chosen
profile. If not specified, the
current directory is used.

-H, --host 127.9.9.1 Specifies the host where the
connector runs.

-P, --port 8090 Specifies the port where
connector runs.

-mp, --mgmt_port 9009 Specifies the management port
for back calls of current
connector from PubSub+
Connector Manager. This
parameter is ignored if the -cm
parameter is not provided.

-j, --jar pubsubplus-connector-ibmmq- The path to the specified JAR
2.9.2.ar file to start the connector. If the
option is not specified, the
default JAR file is used from the
current directory.

4 | Getting Started solacee

Parameter Default Value
-cm, --manager application

-cmh, --cm_host 127.0.0.1

-cmp, --cm_port 9500

-0, --options no default values
-tls N/A

-s, --show N/A

5 | Getting Started

Solace PubSub+ Connector for IBM MQ
Description

Specifies PubSub+ Connector
Manager to use the
configuration storage and
allows you to enable the cloud
configuration for the connector.
When this parameter is
enabled, you can specify the -mp
or --mgmt_port, -H or --host, and
-cmh with the -cmp parameters,
unless you want to use default
values for those parameters. Be
aware, this option disable listed
parameters to be read from
configuration file. In this case,
the operator must explicitly
specify the parameters for the
script, otherwise defaultdefault
values are used.

Specifies the host where
Connector Manager is running.
This parameter is ignored if the
-cm parameter is not provided.

Specifies the port where
Connector Manager is running.
This parameter is ignored if -cm
parameter is not provided.

Specifies the JVM options used
on when the connector starts.
For example, -Xms64M -Xmx16.

Specifies to use HTTPS instead
of HTTP. . When this parameter
is used, the configuration file
must contain an additional
section with the preconfigured
paths for the key store and trust
store files.

Performs a dry run (does
nothing). The output prints the
start CLI command and its raw
output and exits. This
parameter is useful to check
your parameters without
running the connector.

solacee

Solace PubSub+ Connector for IBM MQ

Parameter Default Value Description

-b, --background N/A Runs the connector in the
background. No logs are shown
and the connector continues
running in detached mode.

-h, --help N/A Prints the help information and
exits.

Script also provides that help information from command line using parameter -h.

More configuration example of starting Connector together with Connector Manager are provided
by the Connector Manager samples.

Quick Start: Running the connector as a Container

The following steps show how to use the sample docker compose file that has been included in the
package:

1. Change to the docker directory:
cd samples/docker

This directory contains both the docker-compose.yml file as well as an .env file that contains
environment secrets required for the container’s health check.

2. Run the connector:
docker-compose up -d

This sample docker compose file will:

- Exposes the connector’s 8090 web port to 8090 on the host.
o Connects a PubSub+ event broker and IBM MQ exposed on the host using default ports.
o Mounts the samples/config directory.
> Mounts the previously defined 1ibs directory.
o Creates a healthcheck user with read-only permissions.
= The default username and password for this user can be found within the .env file.

= This user overrides any users you have defined in your application.yml. See here for
more information.

o

Uses the connector’s management health endpoint as the container’s health check.

For more information about how to use and configure this container, see the connector’s container
documentation.

6 | Getting Started solacee

https://hub.docker.com/r/solace/solace-pubsub-connector-ibmmq
https://hub.docker.com/r/solace/solace-pubsub-connector-ibmmq

Solace PubSub+ Connector for IBM MQ
Enabling Workflows

The provided application.yml enables workflow 0 and 1. To enable additional workflows, define the
following properties in the application.yml, where <workflow-id> is a value between [0-19]:

spring:
cloud:
stream:
bindings: # Workflow bindings
input-<workflow-id>:
destination: <input-destination> # Queue name
binder: (solace|jms) # Input system
output-<workflow-id>:
destination: <output-destination> # Topic name
binder: (solace|jms) # Output system

solace:
connector:
workflows:
<workflow-id>:
enabled: true

The connector only supports workflows in the directions of:

o e solace — IBM MQ

e IBM MQ - solace

For more information about Spring Cloud Stream and the Solace PubSub+ binder, see:

» Spring Cloud Stream Reference Guide

* Spring Cloud Stream Binder for Solace PubSub+

7 | Enabling Workflows solacee

https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html
https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter

Solace PubSub+ Connector for IBM MQ

Configuring Connection Details

Solace PubSub+ Connection Details

The Spring Cloud Stream Binder for PubSub+ uses Spring Boot Auto-Configuration for the Solace
Java API to configure its session.

In the application.yml, this typically is configured as follows:

solace:
java:
host: tcp://localhost:55555
msg-vpn: default
client-username: default
client-password: default

For more information and options to configure the PubSub+ session, see Spring Boot Auto-
Configuration for the Solace Java API.

Preventing Message Loss when Publishing to Topic-to-Queue Mappings

If the connector is publishing to a topic that is subscribed to by a queue, messages may be lost if
they are rejected. For example, if queue ingress is shutdown.

To prevent message loss, configure reject-msg-to-sender-on-discard with the including-when-
shutdown flag.

IBM MQ Connection Details

Manual Configuration

To manually configure IBM MQ connection details, set the following in application.yml:

ibm:
mq:
user: app
password: passwérd
channel: DEV.APP.SVRCONN
queue-manager: QM1
conn-name: localhost(1414)
additional-properties:
<key>: <value>

Additional properties are key/value pairs where key can either be the real string for the property
(often starts with XMSC) or the variable as known in the WMQConstants class.

8 | Configuring Connection Details SOlaceo

https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://docs.solace.com/Admin-Ref/CLI-Reference/VMR_CLI_Commands.html#Root_enable_configure_message-spool_queue_reject-msg-to-sender-on-discard
https://www.ibm.com/docs/en/ibm-mq/9.2?topic=jms-wmqconstants

Solace PubSub+ Connector for IBM MQ
JNDI

The JMS binder provides a generic way of configuring and using JNDI.

JNDI Context

The first step in using JNDI is to configure the JNDI context. The JMS binder expects standard JNDI
properties to be specified under jms-binder.jndi.context in a key/value pair format. The key is the
name of the property (e.g. "java.naming.provider.url”) and the value is a string in the format
defined for that property.

For instance, configuring the File System JNDI service provider could look like:

jms-binder:
jndi:
context:
java.naming.factory.initial: com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url: file:/path/to/bindings/file

Note that classes required by the chosen JNDI service provider need to be added to the classpath.

Once a JNDI context is successfully configured, connection factories and/or destinations can be
looked up.

If running as a container and testing with the File System JNDI service provider,
@ consider mounting the .bindings file with a docker bind mount and then setting
et java.naming.provider.url to the target of that mount.

Connection Factory Lookup

To lookup a connection factory, configure jms-binder.jndi.connection-factory.

jms-binder:
jndi:
connection-factory:
name: jndiConnectionFactoryName
user: somelser
password: somePassword

where:

* name: the JNDI object name of the connection factory
* user: the user to authenticate with the JMS broker.

» password: the password to authenticate with the JMS broker.

o JNDI connection factories should not specify a clientID as this prevents producer
bindings from connecting.

9 | Configuring Connection Details SOlaceo

Solace PubSub+ Connector for IBM MQ

Secure Connection

You can create an SSLBundle to configure a secure connection to IBM MQ, and then reference that

SSLBundle using the ibm.mq.ss1-bundle property. For example:

spring:
ssl:
bundle:
jks:
my-bundle:
truststore:
location: "/path/to/truststore.jks"
password: "changeit"
type: "JKS"
ibm:
mq:
user: app

password: passwdrd
channel: DEV.APP.SVRCONN
conn-name: localhost(1414)
ssl-bundle: my-bundle
additional-properties:
WMQ_SSL_CIPHER_SUITE: TLS_RSA_WITH_AES_128_CBC_SHA256 # As an example

Connecting to Multiple Systems
To connect to multiple systems of a same type, use the multiple binder syntax.

For example:

spring:
cloud:
stream:
binders:

1st solace binder in this example
solacel:
type: solace
environment:
solace:
java:
host: tcp://localhost:55555

2nd solace binder in this example
solace?:
type: solace
environment:
solace:
java:

10 | Configuring Connection Details

solacee

https://docs.spring.io/spring-boot/reference/features/ssl.html
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#multiple-systems

Solace PubSub+ Connector for IBM MQ
host: tcp://other-host:55555

The only jms binder
jms1:
type: jms
Add ‘environment' property map here to customize this binder.
For instance, ‘environment.jms-binder.jndi.context’ and ‘environment.jms-
binder.jndi.connection-factory' configuration.

Required for internal use
undefined:
type: undefined
bindings:
input-0:
destination: <input-destination>
binder: jms1
output-0:
destination: <output-destination>
binder: solacel # Reference 1st solace binder
input-1:
destination: <input-destination>
binder: jms1
output-1:
destination: <output-destination>
binder: solace? # Reference 2nd solace binder

The configuration above defines two binders of type solace and one binder of type jms, which are
then referenced within bindings.

Each binder above is configured independently under spring.cloud.stream.binders.<binder-
name>.environment

When connecting to multiple systems, all binder configuration must be specified
using the multiple binder syntax for all binders. For example, under the
o spring.cloud.stream.binders.<binder-name>.environment.

Do not use single-binder configuration (for example, solace.java.* at the root of
your application.yml) while using the multiple binder syntax.

11 | Configuring Connection Details solacee

Solace PubSub+ Connector for IBM MQ
Message Batching

Messages are processed in batches, with transactions possible on the consumer side, producer side,
or both. The optimal configuration depends on the specific use case. The main considerations are:

* A larger batch size can improve throughput but could lead to higher number of duplicates if
producer side transactions are not enabled.

* Transactions on the producer side provide duplicate protection

It is recommended to test different configurations to determine the optimal settings for your use
case. Consult the section on binder configuration options for available options and default values.

0 Batch size can be configured to 1 to disable batching.

Batching and Metrics

The solace.connector.process and solace.connector.error.process metrics apply to batches. These
metrics are incremented once per batch, not once per message.

To get a count of number of messages processed, use the solace.connector.publish.ack metric.

12 | Message Batching solacee

Solace PubSub+ Connector for IBM MQ

User-configured Header Transforms

Deprecated

This feature is deprecated and will be removed in a future release. Use Message
Transforms instead.

Generic Migration Rules:

1. Configuration Structure Changes:

a. Replace solace.connector.workflows.<n>.transform-headers with
solace.connector.workflows.<n>.transform and within it:

i. Add enabled: true to enable transforms

ii. Move transform-headers.expressions to the transform.expressions list
property
2. Expression Syntax Changes:

o Replace direct header references, headers.<headerName>, with
source["headers']['<headerName>'] for reading

o Use target["headers']['<headerName>'] = -+ for writing
> Replace Java methods (T(String), etc.) with built-in functions:
= T(String).join() — #joinString()
= split() — #splitString()
A = toUpperCase() — #upperCaseString()
= tolLowerCase() — #lowerCaseString()

= etc
Example Migration:

Old Configuration:

solace:
connector:
workflows:
0:
transform-headers:
expressions:
route: "T(String).format('%s/%s', headers.region,
headers.status)"
count: "headers.count.toString()"

New Configuration:

solace:

13 | User-configured Header Transforms solacee

Solace PubSub+ Connector for IBM MQ

connector:
workflows:
0:
transform:
enabled: true
expressions:

- transform: "target['headers']['route'] = #joinString('/",
source['headers']['region'], source['headers']['status'])"

- transform: "target['headers']['count'] =
#iconvertNumberToString(source["headers']['count'])"

Generally, the consumed message’s headers are propagated through the connector to the output
message. If you want to transform the headers, then you can do so as follows:

<workflow-id> : The workflow ID ([0-19])
<header> : The key for the outbound header
<expression> : A SpEL expression which has "headers" as parameters

solace.connector.workflows.<workflow-id>.transform-
headers.expressions.<header>=<expression>

Example 1: To create a new header, new_header, for workflow 0 that is derived from the headers foo
& bar:

solace.connector.workflows.0.transform-headers.expressions.new_header
="T(String).format('%s/abc/%s', headers.foo, headers.bar)"

Example 2: To remove the header, delete_me, for workflow 0, set the header transform expression
to null:

solace.connector.workflows.@.transform-headers.expressions.delete_me="null"

For more information about Spring Expression Language (SpEL) expressions, see Spring Expression
Language (SpEL).

14 | User-configured Header Transforms solacee

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions

Solace PubSub+ Connector for IBM MQ

User-configured Payload Transforms

Deprecated

A This feature is deprecated and will be removed in a future release. Use Message
Transforms instead.

Message payloads going through a workflow can be transformed using a Spring Expression
Language (SpEL) expression as follows:

<workflow-id> : The workflow ID ([@-19])
<expression> : A SpEL expression

solace.connector.workflows.<workflow-id>.transform-payloads.expressions[@].transform
=<expression>

A SpEL expression may reference:

* payload: To access the message payload.
* headers.<header_name>: To access a message header value.

» Registered functions.

While the syntax uses an array of expressions, only a single transform expression
o is supported in this release. Multiple transform expressions may be supported in
the future.

Registered Functions

Registered functions are built-in and can be called directly from SpEL expressions. To call a
registered function, use the # character followed by the function name. The following table
describes the available registered functions:

Registered Function Signature Description

boolean isPayloadBytes(Object obj) Returns whether the object obj is an instance of
byte[] or not.

Sample usage of this function within a SpEL

expression: "#isPayloadBytes(payload) ? true :
false"

Example 1: To normalize byte[] and String payloads as upper-cased String payloads or leave
payloads unchanged when of different types:

solace.connector.workflows.@.transform-payloads.expressions[@].transform
="#isPayloadBytes(payload) ? new String(payload).toUpperCase() : payload instanceof

15 | User-configured Payload Transforms solacee

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions-ref-functions

Solace PubSub+ Connector for IBM MQ
T(String) ? payload.toUpperCase() : payload"

Example 2: To convert String payloads to byte[] payloads using a charset retrieved from a message
header or leave payloads unchanged when of different types:

solace.connector.workflows.®.transform-payloads.expressions[@].transform="payload
instanceof T(String) ?
payload.getBytes(T(java.nio.charset.Charset).forName(headers.charset)) : payload"

For more information about Spring Expression Language (SpEL) expressions, see Spring Expression
Language (SpEL).

16 | User-configured Payload Transforms solacee

https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#expressions

Message Headers

Solace PubSub+ Connector for IBM MQ

Solace and JMS headers can be created or manipulated using the User-configured Header
Transforms feature described above.

Solace Headers

Solace headers exposed to the connector are documented in the Spring Cloud Stream Binder for
Solace PubSub+ documentation.

JMS Message Headers

JMS Headers

These headers are to get/set JMS message properties.

Header Name
jms_correlationId

jms_deliveryMode

jms_destination

jms_expiration

jms_messageld

jms_priority

jms_redelivered

jms_replyTo

jms_timestamp

jms_timeToLive

17 | Message Headers

Type
String

int

jakarta.jms.

Destination

long

String

int

boolean

jakarta.jms.

Destination

long

long

Access
Read/Write
Read

Read

Read

Read

Read/Write

Read

Write

Read

Write

Description
The correlation ID for the message.

The delivery mode value specified for
this message.

The destination to which the message is
being sent.

The time at which the JMS message is set
to expire.

A value that uniquely identifies each
message sent by a provider.

Specifies the message’s priority set on the
send.

When header is absent, JMS message is
sent with default priority of 4.

An indication of whether this message is
being redelivered.

The Destination object to which a reply to
this message should be sent.

The time a message was handed off to a
provider to be sent.

Specifies the message’s time to live set on
the send.

When header is absent, JMS message is
sent with default timeToLive of O (zero
means that a message never expires).

solacee

https://github.com/SolaceDev/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#solace-message-headers
https://github.com/SolaceDev/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#solace-message-headers

Solace PubSub+ Connector for IBM MQ

Header Name Type Access Description

jms_type String Read/Write The message type identifier supplied by
the client when the message was sent.

JMS Binder Headers

These headers are to get/set JMS Binder properties. These can be used for getting/setting JMS Binder
metadata.

Header Name Type Access Description

jms_scst_nullPayload Boolean Read Present and true to indicate when the
JMS message payload was null.

Two cases exist:

* A JMS TextMessage with no message
payload is received, the payload is
converted to an empty String and the
jms_scst_nullPayload header is
added.

* A JMS Message with no message
payload is received, the payload is
converted to an empty byte array and
the jms_scst_nullPayload header is
added.

Reserved Message Headers

The following are reserved header spaces:

e solace_

e scst_

jms_|JMS_|JMSX

* Any headers defined by the core Spring messaging framework. See Spring Integration: Message
Headers for more info.

Any headers with these prefixes (that are not defined by the connector or any technology used by
the connector) may not be backwards compatible in future releases of this connector.

18 | Message Headers solacee

https://docs.spring.io/spring-integration/reference/html/message.html#message-headers
https://docs.spring.io/spring-integration/reference/html/message.html#message-headers

Solace PubSub+ Connector for IBM MQ

JMS Destination Types

JMS binding destinations can be configured as physical destination names or as JNDI destination
names.

The spring.cloud.stream.jms.bindings.<binding_name>.<consumer | producer>.destination-type

binding property specifies whether the destination value is a physical destination name or a JNDI
destination name.

Destination Type Destination JNDI Lookup?
queue No
topic No
unknown (default) Yes

When destination-type is either queue or topic, the configured destination is assumed to be a
physical destination name and no JNDI lookup is done.

When destination-type is unknown, the configured destination is assumed to be a JNDI destination
name and a lookup is performed. A JNDI Context must be configured for the lookup to succeed.

For instance, in the following example the consumer’s destination is known at configuration time
and no JNDI lookup is done:

spring:
cloud:
stream:
bindings:
input-0:
destination: physical_queue_name
binder: jms
jms:
bindings:
input-0:
consumer :
destination-type: queue

In the following example, the producer’s destination is only known at runtime after a successful
JNDI lookup:

spring:
cloud:
stream:
bindings:
output-1:
destination: jndi_destination_name
binder: jms

jms:
19 | JMS Destination Types solacee

Solace PubSub+ Connector for IBM MQ
bindings:
output-1:
producer:
destination-type: unknown

20 | JMS Destination Types solacee

Solace PubSub+ Connector for IBM MQ
JMS Shared Durable Subscribers

A JMS consumer binding can bind to a shared durable subscription, enabling multiple consumers to
share the load of messages published to the subscription. Durable subscriptions accumulate
messages even when all consumers are offline, ensuring that no messages are lost.

To consume from a shared durable subscription, the following must be configured:

* spring.cloud.stream.jms.bindings.<binding_name>.consumer.destination-type should be set to a
topic. unknown can also be used as long as the destination resolves to a topic.

* spring.cloud.stream.jms.bindings.<binding_name>.consumer.durable-subscription-name must be
specified with the name of the subscription.

* spring.cloud.stream.bindings.<binding_name>.destination must be set to the name of the topic
on which the subscription is created.

spring:
cloud:
stream:
bindings:
input-0:
destination: topic/1
binder: jms
jms:
bindings:
input-0:
consumer :
destination-type: topic
durable-subscription-name: subscriptionName

21 | JMS Shared Durable Subscribers solacee

Solace PubSub+ Connector for IBM MQ
Dynamic Producer Destinations

To route messages to dynamic destinations at runtime, use the User-configured Header Transforms
feature described above to set the following headers:

Header Name Type Values Applies Description
To
scst_targetDestination string Any valid Solace & Specifies the name of the
destination name JMS dynamic destination to

publish to. Setting this
header overrides the
configured destination.

solace_connector_scst_targe string (queue|topic) JMS Specifies the destination
destination.

When unspecified, the
configured or default
destination type is used.

solace_scst_targetDestinati string (queue|topic) Solace Specifies the destination
onType type of the dynamic
destination.

When unspecified, the
configured or default
destination type is used.

Setting the scst_targetDestination header under
solace.connector.default.workflow.transform-headers may not be viable if not all
workflows follow the same direction.

22 | Dynamic Producer Destinations solacee

Solace PubSub+ Connector for IBM MQ
Asynchronous Publishing

This connector does not support asynchronous publishing. Publish acknowledgments are resolved
synchronously for all workflows regardless of the config option:

<workflow-id> : The workflow ID ([0-19])

solace.connector.workflows.<workflow-1id>.acknowledgment.publish-async=(true|false)

Enabling publish-async enable asynchronous publishing on the connector’s core,
but the effective publishing mode is still synchronous because there is no support
for this feature on either the consumer binding or the producer binding.

23 | Asynchronous Publishing solacee

Solace PubSub+ Connector for IBM MQ

Management and Monitoring Connector

Monitoring Connector’s States

The connector provides an ability to monitor its internal states through exposed endpoints
provided by Spring Boot Actuator.

An Actuator shares information through the endpoints reachable over HTTP/HTTPS. The endpoints
that are available are configured in the connector configuration file.

What endpoints are available is configured in the connector configuration file:

management:
simple:
metrics:
export:
enabled: true
endpoints:
web:
exposure:
include:
"health,metrics,loggers,logfile,channels,env,workflows,leaderelection,bindings,info"

The above sample configuration enables metrics collection through the configuration parameter of
management.simple.metrics.export.enabled set to true and then shares them through the
HTTP/HTTPS endpoint together with other sections configured for the current connector.

Exposed HTTP/HTTPS Endpoints

The set of endpoints exposed through the HTTP/HTTPS endpoint.

* Exposed endpoints are available if you query the endpoints using the web interface (for
example https://localhost:8090/actuator/<some_endpoint>) and also available in PubSub+
Connector Manager.

» The operator may choose to not expose all or some of these endpoints. If so, the Actuator
endpoints that are not exposed are not visible if you query the endpoints (for example,
https://localhost:8090/actuator/<some_endpoint>) nor in PubSub+ Connector Manager.

The simple metrics registry is only to be used for testing. It is not a production-
ready means of collecting metrics. In production, use a dedicated monitoring
system (for example, Datadog, Prometheus, etc.) to collect metrics.

The Actuator endpoint now contains information about Connector’s internal states shared over the
following HTTP/HTTPS endpoint:

GET: /actuator/

24 | Management and Monitoring Connector solacee

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#actuator

Solace PubSub+ Connector for IBM MQ
The following shows an example of the data shared with the configuration above:

{
" links": {
"self": {
"href": "/actuator",
"templated": false
H
"workflows": {
"href": "/actuator/workflows",
"templated": false
Iy
"workflows-workflowId": {
"href": "/actuator/workflows/{workflowId}",
"templated": true
I
"leaderelection": {
"href": "/actuator/leaderelection”,
"templated": false
+
"health-path": {
"href": "/actuator/health/{*path}",
"templated": true
Iy
"health": {
"href": "/actuator/health",
"templated": false
I
"metrics": {
"href": "/actuator/metrics",
"templated": false
H
"metrics-requiredMetricName": {
"href": "/actuator/metrics/{requiredMetricName}",
"templated": true
}
}
}

25 | Management and Monitoring Connector solacee

Solace PubSub+ Connector for IBM MQ
Health

The connector reports its health status using the Spring Boot Actuator health endpoint.
To configure the information returned by the health endpoint, configure the following properties:

* management.endpoint.health.show-details

* management.endpoint.health.show-components
For more information, about health endpoints, see Spring Boot documentation.

Health for the workflow, Solace binder, and jms binder components are exposed when
management.endpoint.health.show-components is enabled. For example:

management:
endpoint:
health:
show-components: always
show-details: always

This configuration would always show the full details of the health check including the workflows
and binders. The default value is never.

Workflow Health

A workflows health indicator is provided to show the health status for each of a connector’s
workflows. This health indicator has the following form:

{
"status": "(UP|DOWN)",
"components": {
"<workflow-id>": {
"status": "(UP|DOWN)",
"details": {
"error": "<error message>'

}
}
}
}
Health Status Description
UP A status that indicates the workflow is functioning as expected.
DOWN A status that indicates the workflow is unhealthy. Operator intervention

may be required.

26 | Health solacee

https://docs.spring.io/spring-cloud-stream/docs/3.2.2/reference/html/spring-cloud-stream.html#_health_indicator
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints.health

Solace PubSub+ Connector for IBM MQ

®

¥

workflow state?
paused

no

not paus))
p E'g- fail-ower in progress?

Yes

leader-election state?

active
workflow state? stopped
not stopped

health=DOWN |
J

e | e

Y

health=DOWN |
L 4

b

L

.?{

v

workflow's overall binders'fhindings' states?

2

“

| health=DOWN |

? Y
| health=uUP |

UP or RECONNECTING or UNKNOWHN

Figure 1. Workflow Health Resolution Diagram

This health indicator is enabled default. To disable it, set the property as follows:

management.health.workflows.enabled=false

Solace Binder Health

For details, see the Solace binder documentation.

JMS Binder Health

Health Status
upP

RECONNECTING

27 | Health

Description
Status indicating that the binder is functioning as expected.

Status indicating that the binder is trying to reconnect to the message
broker.

solacee

https://github.com/SolaceDev/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#solace-binder-health-indicator

Solace PubSub+ Connector for IBM MQ
Health Status Description
DOWN Status indicating that the binder is having difficulties reconnecting to the

message broker. The binder will automatically recover when underlying
connectivity issues are resolved. User intervention may be required.

The length of time a JMS binder spends in the RECONNECTING state before moving to the DOWN state is

configurable via the jms-binder.health-check.interval and jms-binder.health-check.reconnect-
attempts-until-down config options. See the JMS Binder Configuration Options section for details.

28 | Health solacee

Solace PubSub+ Connector for IBM MQ
Leader Election

The connector has three leader election modes for redundancy:

Leader Election Mode Description

Standalone (Default) A single instance of a connector without any leader election capabilities.

Active-Active A participant in a cluster of connector instances where all instances are
active.
Active-Standby A participant in a cluster of connector instances where only one instance

is active (i.e. the leader), and the others are standby.

Operators can configure the leader election mode by setting the following configuration:

solace.connector.management.leader-election.mode
=(standalone|active_active|active_standby)

Leader Election Modes: Standalone / Active-Active

When the connector starts, all enabled workflows start at the same time. The connector itself is
considered as always active.

Leader Election Mode: Active-Standby

If the connector is in active-standby mode, a PubSub+ management session and management queue
must be configured as follows:

solace.connector.leader-election.mode=active_standby

Management session

Exact same interface as solace.java.*
solace.connector.management.session.host=<management-host>
solace.connector.management.session.msgVpn=<management-vpn>
solace.connector.management.session.client-username=<client-username>
solace.connector.management.session.client-password=<client-password>
solace.connector.management.session.<other-property-name>=<value>

Management queue name accessible by the management session
Must have exclusive access type
solace.connector.management.queue=<management-queue-name>

To determine if the connector is active or standby, it creates a flow to the management queue. If this
flow is active, then the connector’s state is active and will start its enabled workflows. Otherwise, if
this flow is inactive, then the connector’s state is standby and will stop its enabled workflows.

29 | Leader Election solacee

Solace PubSub+ Connector for IBM MQ

At a macro level for a cluster of connectors, failover only happens when there are infrastructure
failures (for example, the JVM goes down or networking failures to the management queue).

If a workflow fails to start or stop during failover, it will retry up to some maximum defined by the
configuration option, solace.connector.management.leader-election.fail-over.max-attempts.

During failover, the connector attempts to start or stop all enabled workflows. After an attempt has
been made to start or stop each workflow, the connector transitions to the active/standby mode
regardless of the status of the workflows.

Leader Election Management Endpoint

A custom leaderelection management endpoint was provided using Spring Actuator.

Operators can navigate to the connector’s leaderelection management endpoint to view its leader
election status.

Endpoint Operation Payloads
/leaderelection Read Request: None.
(HTTP GET)
Response:
{
"mode": {
"type": "(standalone |

active_active | ©)
active_standby)",
"state": "(active | standby)", @
"source": { ®
"queue": "<management-queue-name>",
"host": "<management-host>",
“msgVpn": "<management-vpn>"
¥
}
¥

@ Mandatory parameter in output
@ Mandatory parameter in output

® Optional section. Appears only when type is set to
active_standby.

30 | Leader Election solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints

Solace PubSub+ Connector for IBM MQ

Workflow Management

Workflow Management Endpoint

A custom workflows management endpoint using Spring Actuator is provided to manage workflows.

To enable the workflows management endpoint:

management:
endpoints:
web:
exposure:
include: "workflows"

Once the workflows management endpoint is enabled, the following operations can be performed:

Endpoint Operation Payloads
/workflows Read Request: None.
(HTTP GET)
Response:

Same payload as the /workflows/{workflowId} read
operation, but as a list of all workflows.

/workflows/{workflowId} Read Request: None.
(HTTP GET)
Response:
{

"id": "<workflowId>",
"enabled": (true|false),
"state": "(running|stopped|paused|unknown)",
"inputBindings": [
"<input-binding>"
1,
"outputBindings": [
"<output-binding>"

]
}
/workflows/{workflowId} Write Request:
(HTTP POST)
{
"state": "STARTED|STOPPED|PAUSED|RESUMED"
}

Response: None.

31 | Workflow Management solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints

Solace PubSub+ Connector for IBM MQ

o Only workflows with Solace PubSub+ consumers (where the solace binder is
defined in the input-#) support pause/resume.

Some features require for the connector to manage workflow lifecycles. There’s no
guarantee that workflow states continue to persist when write operations are used
to change the workflow states while such features are in use.

o For example: When the connector is configured in the active-standby leader
election mode, workflows will automatically transition from running to stopped
when the connector fails over from active to standby. Vice-versa for a failover in
the opposite direction.

Workflow States

A workflow’s state is defined as the aggregate states of its bindings (see the bindings management
endpoint) as follows:

Workflow State Condition

running All bindings have state="running".

stopped All bindings have state="stopped".

paused All consumer bindings and all pausable producer bindings have

state="paused".

unknown None of the other states. Represents an inconsistent aggregate
binding state.

When the producer or consumer binding is not implementing Spring’s Lifecycle
interface, Spring always reports the bindings as state=N/A. The state=N/A is ignored

o when deciding the overall state of the workflow. For example, if the consumer’s
binding is state=running and producer’s binding state=N/A (or vise-versa), the
workflow state would be running.

For more information about binding states, see Spring Cloud Stream: Binding visualization and
control.

32 | Workflow Management solacee

https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator
https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_actuator

Solace PubSub+ Connector for IBM MQ
[
Metrics

This connector uses Spring Boot Metrics that leverages Micrometer to manage its metrics.

Connector Meters

In addition to the meters already provided by the Spring framework, this connector introduces the
following custom meters:

Name Type Tags Descripti Notes
on
solace.connector. Timer type: channel The This meter is a rename of
process o processin spring.integration.send whose
name: <bindingName> . o
g time. name tag matches a binding
result: name.
(success|failure)
exception:
(none|exception
simple class name)
solace.connector. Timer type: channel The error This meter is a rename of
€rror.process o processin spring.integration.send whose
name: <bindingNames> ~ . .
g time. name tag matches an input
result: binding’s error channel name
(success|failure) (<destination>.<group>.errors).
exception: Meters might be merged under

(none|exception

_ the same name tag (delimited by
simple class name)

|) if multiple bindings have the
same error channel name (for
example, bindings can have a
matching destination, group, or
both). NOTE: Setting a
binding’s group is not

supported.
solace.connector. Distribut name: <bindingName> The
message.size.payload ionSummar message
y payload
size.
Base
Units:
bytes

33 | Metrics solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics
https://docs.spring.io/spring-integration/docs/current/reference/html/system-management.html#overview
https://docs.spring.io/spring-integration/docs/current/reference/html/system-management.html#overview

Name

solace.connector.
message.size.total

solace.connector.
publish.ack

solace.connector.
transform.
expressions.count

solace.connector.
transform.time

Solace PubSub+ Connector for IBM MQ

Type Tags Descripti Notes
on
Distribut name: <bindingName> The total
ionSummar message
y size.
Base
Units:
bytes
Counter name: <bindingName> The
publish
result:
Base . acknowle
_ (success|failure)
Units: dgment
acknowled exception: count.
gments (none |exception
simple class name)
Gauge workflow.id: Transfor
<workflowId> mation
Base expressio
Units: ns count
expressio
ns
Timer workflow.id: Transfor This is the aggregate time for all

<workflowId>

result:
(success|failure)

mation expressions used to transform a
execution single message.

time

The solace.connector.process meter with result=failure is not a reliable measure
of tracking the number of failed messages. It only tells you how many times a step
processed a message (or batch of messages), how long it took to process that

Instead,

we

recommend

that

message, and if that step completed successfully.

you use a combination of

solace.connector.error.process and solace.connector.publish.ack to track failed
messages.

Add a Monitoring System

By default, this connector includes the following monitoring systems:

» Datadog
* Dynatrace
e Influx

. JMX

* OpenTelemetry (OTLP)

34 | Metrics

solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.datadog
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.dynatrace
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.influx
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.jmx
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.otlp

Solace PubSub+ Connector for IBM MQ
 StatsD

To add additional monitoring systems, add the system’s micrometer-registry-<system> JAR file and
its dependency JAR files to the connector’s classpath. The included systems can then be individually

enabled/disabled by setting management.<system>.metrics.export.enabled=true in the
application.yml.

35 | Metrics solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics.export.statsd

Solace PubSub+ Connector for IBM MQ

Security

Securing Endpoints

Exposed Management Web Endpoints

There are many endpoints that are automatically enabled for this connector. For a comprehensive
list, see Management and Monitoring Connector.

The health endpoint only returns the root status by default (i.e. no health details).

To enable other management endpoints, see Spring Actuator Endpoints.

Authentication & Authorization
This release of the connector only supports basic HTTP authentication.

By default, no users are created unless the operator configures them in their configuration file. The
configuration parameters responsible for security are as follows:

solace:
connector:
security:
enabled: true
users:
- name: user]

password: pass
- name: adminl

password: admin

roles:

- admin

In the above example, we have created two users:

* userl: Has access to perform GET (Read) requests.

* adminl: Has access to perform GET and POST (Read & Write) requests.

To fully disable security and permit anyone to access the connector’s web endpoints, operators can
configure the solace.connector.security.enabled parameter false.

o While these properties could be defined in an application.yml file, we recommend
that you use environment variables to set secret values.

The following example shows you how to define users using environment variables:

Create user with no role (i.e. read-only)
SOLACE_CONNECTOR_SECURITY_USERS_@ NAME=user1

36 | Security solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints

Solace PubSub+ Connector for IBM MQ
SOLACE _CONNECTOR_SECURITY_USERS_@_PASSWORD=pass

Create user with admin role

SOLACE_CONNECTOR_SECURITY_USERS_1_NAME=admin1

SOLACE_CONNECTOR_SECURITY_USERS_ 1 PASSWORD=admin

SOLACE_CONNECTOR_SECURITY_USERS_1_ROLES_@=admin
In the above example, we have created two users:

» userl: Has access to perform GET (Read) requests.

* adminl: Has access to perform GET and POST (Read & Write) requests.

solace.connector.security.users is a list. When users are defined in multiple
sources (different application.yml files, environment variables, and so on),
overriding works by replacing the entire list. In other words, you must pick one

o place to define all your users, whether in a single application properties file or as
environment variables.

For more information, see Spring Boot - Merging Complex Types.

TLS
TLS is disabled by default.

To configure TLS, see Spring Boot - Configure SSL and TLS Setup in Spring.

37 | Security solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties.merging-complex-types
https://docs.spring.io/spring-boot/docs/current/reference/html/howto.html#howto.webserver.configure-ssl
https://www.baeldung.com/spring-tls-setup

Solace PubSub+ Connector for IBM MQ
Consuming Object Messages

For the connector to process object messages, it needs access to the classes which define the object
payloads.

Assuming that your payload classes are in their own project(s) and are packaged into their own
jar(s), place these jar(s) and their dependencies (if any) onto the connector’s classpath.

O It is recommended that these jars only contain the relevant payload classes to
- prevent any oddities.

In the jar(s), your class files must be archived in the same directory/classpath as
the application that publishes them.

e.g. If the source application is publishing a message with payload type,
O MySerializablePayload, defined under classpath com.sample.payload, then when
- packaging the payload jar for the connector, the MySerializablePayload class must
still be accessible under the com.sample.payload classpath.

Typically, build tools such as Maven or Gradle will handle this when packaging
jars.

38 | Consuming Object Messages SOlaceo

Solace PubSub+ Connector for IBM MQ

Adding External Libraries

The connector jar uses the loader.path property as the recommended mechanism for adding
external libraries to the connector’s classpath.

See Spring Boot - PropertiesLauncher Features for more info.

To add libraries to the connector’s container image, see the connector’s container documentation.

39 | Adding External Libraries solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/executable-jar.html#appendix.executable-jar.property-launcher
https://hub.docker.com/r/solace/solace-pubsub-connector-ibmmq

Solace PubSub+ Connector for IBM MQ

Configuration

Providing Configuration

For information about about how the connector detects configuration properties, see Spring Boot:
Externalized Configuration.

Converting Canonical Spring Property Names to Environment Variables

For information about converting the Spring property names to environment variables, see the
Spring documentation.

Spring Profiles

If multiple configuration files exist within the same configuration directory for use in different
environments (development, production, etc.), use Spring profiles.

Using Spring profiles allow you to define different application property files under the same
directory using the filename format, application-{profile}.yml.

For example:
» application.yml: The properties in non-specific files that always apply. Its properties are
overridden by the properties defined in profile-specific files.
* application-dev.yml: Defines properties specific to the development environment.

* application-prod.yml: Defines properties specific to the production environment.
Individual profiles can then be enabled by setting the spring.profiles.active property.

See Spring Boot: Profile-Specific Files for more information and an example.

Configure Locations to Find Spring Property Files

By default, the connector detects any Spring property files as described in the Spring Boot’s default
locations.

 If you want to add additional locations, add --spring.config.additional-location=file:<custom
-config-dir> (This parameter is similar to the example command in Quick Start: Running the
connector via command line).

 If you want to exclusively use the locations that you’ve defined and ignore Spring Boot’s default
locations, add
--spring.config.location=optional:classpath:/,optional:classpath:/config/,file:<custom
-config-dir>.

For more information about configuring locations to find Spring property files, see Spring Boot
documentation.

40 | Configuration solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties.relaxed-binding.environment-variables
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.profile-specific
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files

Solace PubSub+ Connector for IBM MQ

If you want configuration files for multiple, different connectors within the same
config directory for use in different environments (such as development,
production, etc.), we recommend that you use Spring Boot Profiles instead of child
directories. For example:
» Set up your configuration like this:
o config/application-prod.yml
(;) o config/application-dev.yml
- * Do not do this:
o config/prod/application.yml
o config/dev/application.yml
Child directories are intended to be used for merging configuration from multiple
sources of configuration properties. For more information and an example of

when you might want to use multiple child directories to compose your
application’s configuration, see the Spring Boot documentation.

Obtaining Build Information

Build information, including version, build date, time and description is enabled by default via
Spring Boot Actuator Info Endpoint. By default, every connector shares all information related to its
build only.

Below is the structure of the output data:

{
"build": {
"version": "<connector version>",
"artifact": "<connector artifact>",
"name": "<connector name>",
"time": "<connector build time>",
"group": "<connector group>",
"description”: "<connector description>",
"support": "<support information>"
}
¥

If you want to exclude build data from the output of the info endpoint, set
management.info.build.enabled to false.

Alternatively, if you want to disable the info endpoint entirely, you can remove 'info' from the list of
endpoints specified in management.endpoints.web.exposure.include.

Spring Configuration Options

This connector packages many libraries for you to customize functionality. Here are some
41 | Configuration solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.profile-specific
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.wildcard-locations
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/#info
https://docs.spring.io/spring-boot/docs/current/actuator-api/htmlsingle/#info.retrieving.response-structure.build

references to get started:

» Spring Cloud Stream

* Spring Cloud Stream Binder for Solace PubSub+

* Spring Logging

* Spring Actuator Endpoints

* Spring Metrics

JMS Binder Configuration Options

Solace PubSub+ Connector for IBM MQ

The following properties are available at the binder level and are complementary to the properties
described in the Configuring Connection Details section.

These properties are to be prefixed with jms-binder.

Config Option

health-check.interval

health-
check.reconnect-
attempts-until-down

jndi.context
jndi.connection-
factory.name

jndi.connection-
factory.user

jndi.connection-
factory.password

Type Valid
Values

long > 0

long >= 0

java.util. key/value
Properties pairs
string

string

string

JMS Consumer Options

Default
Value

10000

10

Description

Interval (in ms) between
reconnection attempts while health
status is RECONNECTING

The number of reconnection
attempts until JMS binder
transitions from RECONNECTING to
DOWN.

A value of @ means unlimited
number of attempts which means
that the binder would never
transition to the DOWN state.

Standard JNDI properties. See JNDI
Context section for details.

The connection factory’s JNDI name
used for the lookup

The user to authenticate with the
JMS broker.

The password to authenticate with
the JMS broker.

The following config options are available to JMS consumers. Options within the same table share

the same prefix.

Options prefixed with spring.cloud.stream.jms.bindings.<bindingName>.consumer.

42 | Configuration

solacee

https://docs.spring.io/spring-cloud-stream/docs/current/reference/html/spring-cloud-stream.html#_configuration_options
https://github.com/SolaceProducts/solace-spring-cloud/tree/master/solace-spring-cloud-starters/solace-spring-cloud-stream-starter#configuration-options
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.logging
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.endpoints
https://docs.spring.io/spring-boot/docs/current/reference/html/actuator.html#actuator.metrics

Config Type
Option

batch-max- int
size

transacted boolean

destination- String
type

durable- String
subscription
-name

43 | Configuration

Valid Values Default
Value

>= 1 255

(true|false) false

(queue|topic unknown
| unknown)

Solace PubSub+ Connector for IBM MQ

Description

The maximum number of messages that
can be grouped together in a single batch.
If a consumer polls for messages and
none are available, a partial batch is
created.

Indicates whether messages are received
within a local transaction. When set to
true, it indicates that the JMS consumer
reads messages within a local transaction
and commits the transaction when the
batch has been successfully processed.
Set to false to disable transactions, which
is what you can consider when batch
max size=1.

The type of destination where messages
are consumed from.

queue

The destination value is assumed to be a
physical queue and no JNDI lookup is
done.

topic

The destination value is assumed to be a
physical topic and no JNDI lookup is
done. This option requires durable-
subscription-name to also be set.

unknown

The destination value is assumed to be a
JNDI name. The actual destination name
is only known after a successful lookup.
A valid JNDI context must be configured
via jms-binder.jndi.context.

The name of the shared durable
subscription to consume from. The
subscription is created on the broker if it
doesn’t already exist.

Applies, and is mandatory, when
destination-type is or resolves to a topic.

solacee

Solace PubSub+ Connector for IBM MQ
Options prefixed with spring.cloud.stream.bindings.<bindingName>.consumer .

Config Type Valid Values Default Description

Option Value

concurrency int >0 1 The number of concurrent consumers to
create.

If a config option applies to all JMS input bindings, it can be prefixed with
spring.cloud.stream.jms.default.consumer. if the option is from the first table or with
spring.cloud.stream.default.consumer. if the option is from the second table. This is a convenient
way to assign a configuration to all JMS input bindings.

JMS Producer Options
The following config options are available to JMS producers.

Options prefixed with spring.cloud.stream.jms.bindings.<bindingName>.producer.

Config Type Valid Values Default Description
Option Value
destination- string (queue|topic unknown The type of destination where messages
type | unknown) are published to.
queue

The destination value is assumed to be a
physical queue and no JNDI lookup is
done.

topic

The destination value is assumed to be a
physical topic and no JNDI lookup is
done.

unknown

The destination value is assumed to be a
JNDI name. The actual destination name
is only known after a successful lookup.
A valid JNDI context must be configured
via jms-binder.jndi.context.

transacted boolean (true|false) true Indicates whether the JMS producer
publishes messages from a received
batch using a local transaction. Setting
transacted to true provides duplicate
protection in case of producer failures.
Set to false to disable transactions.

44 | Configuration solacee

Solace PubSub+ Connector for IBM MQ

If a config option applies to all JMS output bindings, it can be prefixed with
spring.cloud.stream.jms.default.producer.. This is a convenient way to assign a configuration to all
JMS output bindings.

Connector Configuration Options

The following table lists the configuration options. The following options in Config Option are
prefixed with solace.connector.:

Config Option Type Default Description
Value
management.leader- int 3 The maximum number of attempts to

election.fail-

; perform a fail-over.
over.max-attempts Constraint: > 0

management.leader- long 1000 The initial interval (milliseconds) to back-

election.fail-) off when retrying a fail-over.
over.back-off- Constraint: > 0

initial-interval
management.leader- long 10000 The maximum interval (milliseconds) to

election.fail- . back-off when retrying a fail-over.
over.back-off-max- Constraint: > 0

interval
management.leader- double 2.0 The multiplier to apply to the back-off
election.fail- . interval between each retry of a fail-over.
over.back-off- Constraint: >= 1.0
multiplier
management.leader- enum standalon The connector’s leader election mode.
election.mode e

One of:

standalone:
A single instance of a connector without
any leader election capabilities.

* standalone
e active_active

* active_standby active_active:
A participant in a cluster of connector
instances where all instances are active.

active_standby:

A participant in a cluster of connector
instances where only one instance is active
(i.e. the leader), and the others are standby.

management .queue string null The management queue name.
management.session.* See Spring Boot Defines the management session. This has
Auto-Configuration the same interface as that used by
for the Solace Java solace.java.*.
API

See Spring Boot Auto-Configuration for the
Solace Java API for more info.

45 | Configuration solacee

https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties
https://github.com/SolaceProducts/solace-spring-boot/tree/master/solace-spring-boot-starters/solace-java-spring-boot-starter#updating-your-application-properties

Config Option Type Default
Value
security.enabled boolean true
security. string null
users[<index>].name
security. string null
users[<index>].passw
ord
security. list<string> empty
users[<index>].roles list
Valid values: (i.e.
read-
* admin only)

Solace PubSub+ Connector for IBM MQ

Description

If true, security is enabled. Otherwise,
anyone has access to the connector’s
endpoints.

The name of the user.

The password for the user.

The list of roles that the specified user has.
It has read-only access if no roles are
returned.

Workflow Configuration Options

These configuration options are defined under the following prefixes:

* solace.connector.workflows.<workflow-id>.: If the options support per-workflow configuration

and the default prefixes.

* solace.connector.default.workflow.: If the options support default workflow configuration.

Config Option Type Default
Value

enabled boolean false

transform.enabled boolean false

46 | Configuration

Description

If true, the workflow is enabled.

0 Cannot be set at the
default workflow level.
If true, message transformation is enabled

for the workflow.

Disables the legacy transform-headers.*
and transform-payload.* options.

See Message Transforms for more info.

solacee

Config Option Type Default
Value
transform.source- string applicati
payload.content-type on/
One of: vnd.solac
e.micro-
e application/ integrati
vnd.solace. on..
. unspecifi
micro-
)) ed
integration.
unspecified

* application/json

transform.target- string applicati
payload.content-type on/
One of: vnd.solac
e.micro-
 application/ integrati
vnd.solace. on..
. unspecifi
micro-
)) ed
integration.
unspecified

* application/json

transform. string
expressions[<index>]
.transform A SpEL expression

transform-headers. Map<string, string> empty map
expressions

Key:

A header name.

Value:

A SpEL string that
accepts headers as
parameters.

acknowledgment. boolean false
publish-async

47 | Configuration

Solace PubSub+ Connector for IBM MQ

Description

The content type to interpret the source
payload as.

See Content Type Interpretation for more
info.

The content type to interpret and serialize
the target payload as.

See Content Type Interpretation for more
info.

A SpEL expression at some <index> in the
ordered list of expressions to transform
the message.

See Message Transform for more info.

Deprecated. Use Message
Transforms (transform.*)
instead.

A mapping of header names to header
value SpEL expressions.

The SpEL context contains the headers
parameter that can be used to read the
input message’s headers.

If true, publisher acknowledgment
processing is done asynchronously.

The workflow’s consumer and producer
bindings must support this mode,
otherwise the publisher acknowledgments
are processed synchronously regardless of
this setting.

solacee

Solace PubSub+ Connector for IBM MQ

Config Option Type Default Description
Value
acknowledgment.back- int 255 The maximum number of outstanding

pressure-threshold messages with unresolved

acknowledgments. Message consumption
is paused when the threshold is reached to
allow for producer acknowledgments to

Constraint: >= 1

catch up.
acknowledgment. int 600000 The maximum amount of time (in
publish-timeout millisecond) to wait for asynchronous
Constraint: >= -1 publisher acknowledgments before

considering a message as failed. A value of
-1 means to wait indefinitely for publisher
acknowledgments.

48 | Configuration solacee

Solace PubSub+ Connector for IBM MQ
[d
License

This project is licensed under the Solace Community License, Version 1.0. - See the LICENSE file for
details.

Support
Support is offered best effort via our Solace Developer Community.

Premium support options are available, please Contact Solace.

49 | License solacee

https://solace.community/
https://solace.com/contact-us

	Solace PubSub+ Connector for IBM MQ: User Guide
	Table of Contents
	Preface
	Getting Started
	Prerequisites
	Quick Start common steps
	Quick Start: Running the connector via command line
	Quick Start: Running the connector via start.sh script
	Quick Start: Running the connector as a Container

	Enabling Workflows
	Configuring Connection Details
	Solace PubSub+ Connection Details
	Preventing Message Loss when Publishing to Topic-to-Queue Mappings

	IBM MQ Connection Details
	Manual Configuration
	JNDI
	Secure Connection

	Connecting to Multiple Systems

	Message Batching
	Batching and Metrics

	User-configured Header Transforms
	User-configured Payload Transforms
	Registered Functions

	Message Headers
	Solace Headers
	JMS Message Headers
	JMS Headers
	JMS Binder Headers

	Reserved Message Headers

	JMS Destination Types
	JMS Shared Durable Subscribers
	Dynamic Producer Destinations
	Asynchronous Publishing
	Management and Monitoring Connector
	Monitoring Connector’s States
	Exposed HTTP/HTTPS Endpoints

	Health
	Workflow Health
	Solace Binder Health
	JMS Binder Health

	Leader Election
	Leader Election Modes: Standalone / Active-Active
	Leader Election Mode: Active-Standby
	Leader Election Management Endpoint

	Workflow Management
	Workflow Management Endpoint
	Workflow States

	Metrics
	Connector Meters
	Add a Monitoring System

	Security
	Securing Endpoints
	Exposed Management Web Endpoints
	Authentication & Authorization
	TLS

	Consuming Object Messages
	Adding External Libraries
	Configuration
	Providing Configuration
	Converting Canonical Spring Property Names to Environment Variables
	Spring Profiles
	Configure Locations to Find Spring Property Files
	Obtaining Build Information

	Spring Configuration Options
	JMS Binder Configuration Options
	JMS Consumer Options
	JMS Producer Options

	Connector Configuration Options
	Workflow Configuration Options

	License
	Support

