Solace PubSub+ Connector for IBM MQ

Solace Corporation

Version 2.9.2

solacee

Table of Contents

Preface
Getting Started
Prerequisites
Usage
Connecting to Services on the Host
Configuring a Healthcheck
Providing Configuration
Ports
Volumes
Volume: Spring Configuration Files
Volume: Libraries
Volume: Classpath Files
Volume: Output Files
Configuring the JVM
Support

License

© ©O© 00 00 00 I N o U W DN DD N DN =

—
(e}

Solace PubSub+ Connector for IBM MQ
Preface

Solace PubSub+ Connector for IBM MQ bridges data between the Solace PubSub+ Event Broker and
IBM MQ providing a flexible and efficient way to integrate IBM MQ application data with your
Solace-backed, event-driven architecture and the Event Mesh. The connector is deployable
standalone or in redundancy modes of “active-standby” or “active-active” to allow for high-
availability and horizontal scaling of your data movement. Each connector instance supports up to
20 individual workflows (source-to-target pipeline), minimizing the number of connector instances
deployed and managed. The use of various Spring Framework technologies allows for easy
configuration of the connector, advanced logging capabilities, and export of live metrics data to
external monitoring solutions.

1| Preface solacee

Solace PubSub+ Connector for IBM MQ

Getting Started

Release Notes

Prerequisites

* Docker or Podman
¢ PubSub+ Event Broker

« IBM MQ

Usage

1. Create a directory called 1ibs
2. Download the jars for the IBM MQ Client and all its dependencies to the 1ibs directory:

o https://central.sonatype.com/artifact/com.ibm.mg/com.ibm.mq.jakarta.client (tested with
9.4.1.1)

3. Create a directory called config

4. Create an application.yml or application.properties file in the config directory containing the
properties needed for your connector.

o For an example of such a config file, see the one packaged in the connector zip at
https://solace.com/connectors/pubsub-connector-for-ibm-mq

5. Run the container with minimal configuration:

Docker

docker run -d --name my-connector \
-v ‘pwd'/1libs/:/app/external/libs/:ro \
-v ‘pwd‘/config/:/app/external/spring/config/:ro \
solace/solace-pubsub-connector-ibmmg:2.9.2

Podman

podman run -d --name my-connector \
-v ‘pwd‘/libs/:/app/external/libs/:ro \
-v ‘pwd'/config/:/app/external/spring/config/:ro \
solace/solace-pubsub-connector-ibmmg:2.9.2

Connecting to Services on the Host

If services (for example a PubSub+ event broker) are exposed on the localhost, they can be
referenced using the container platform’s special DNS name with SOLACE_JAVA_HOST, which resolves
to an internal IP address that’s used by the host.

2 | Getting Started solacee

https://products.solace.com/download/CONN_IBMMQ_RN
https://www.docker.com/
https://podman.io/
https://solace.com/products/event-broker/
https://www.ibm.com/products/mq
https://central.sonatype.com/artifact/com.ibm.mq/com.ibm.mq.jakarta.client
https://solace.com/connectors/pubsub-connector-for-ibm-mq

Solace PubSub+ Connector for IBM MQ
For example in Docker, use the following command:

docker run -d --name my-connector \
-v ‘pwd‘/libs/:/app/external/libs/:ro \
-v ‘pwd'/config/:/app/external/spring/config/:ro \
--env SOLACE_JAVA _HOST=host.docker.internal:55555 \
--env IBM_MQ_CONNNAME='host.docker.internal(1414)"' \
solace/solace-pubsub-connector-ibmmg:2.9.2

For example in Docker, use the following command:

podman run -d --name my-connector \
-v ‘pwd‘/libs/:/app/external/libs/:ro \
-v ‘pwd'/config/:/app/external/spring/config/:ro \
--env SOLACE_JAVA HOST=host.containers.internal:55555 \
--env IBM_MQ_CONNNAME="host.containers.internal(1414)" \
solace/solace-pubsub-connector-ibmmg:2.9.2

Configuring a Healthcheck
You can configure the health to perform the following tasks:

* Create a regular read-only wuser called healthcheck with a password wusing
SOLACE_CONNECTOR_SECURITY_USERS_0_NAME and SOLACE_CONNECTOR_SECURITY_USERS_@_PASSWORD.

* Use the healthcheck user as the user to poll the management health endpoint in the container’s
healthcheck command and fails it if the connector is unhealthy.

Here’s a basic example command of how to configure the health check for container:

For example in Docker, use the following command:

docker run -d --name my-connector \
-v ‘pwd'/libs/:/app/external/libs/:ro \
-v ‘pwd‘/application.yml:/app/external/spring/config/application.yml:ro \
--env SOLACE_CONNECTOR_SECURITY_USERS_O_NAME=healthcheck \
--env SOLACE_CONNECTOR_SECURITY_USERS_0_PASSWORD=healthcheck \
--healthcheck-command="curl -X GET -u healthcheck:healthcheck --fail
localhost:8090/actuator/health” \
solace/solace-pubsub-connector-ibmmg:2.9.2

For example in Podman, use the following command:

podman run -d --name my-connector \
-v ‘pwd‘/libs/:/app/external/libs/:ro \
-v ‘pwd'/application.yml:/app/external/spring/config/application.yml:ro \
--env SOLACE_CONNECTOR_SECURITY_USERS_0 NAME=healthcheck \

3 | Getting Started solacee

Solace PubSub+ Connector for IBM MQ
--env SOLACE_CONNECTOR_SECURITY_USERS_0_PASSWORD=healthcheck \
--healthcheck-command="curl -X GET -u healthcheck:healthcheck --fail
localhost:8090/actuator/health” \
solace/solace-pubsub-connector-ibmmg:2.9.2

4 | Getting Started solacee

Solace PubSub+ Connector for IBM MQ
Providing Configuration

You can provide Spring configuration properties to this container using one of the following ways:

1. Use environment variables.

2. Use volumes containing Spring configuration files (as well as other volumes).

5 | Providing Configuration solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.typesafe-configuration-properties.relaxed-binding.environment-variables

Solace PubSub+ Connector for IBM MQ
Ports

The following ports are required for the container:

Port Usage

8090 The connector’s management endpoint.

6 | Ports solacee

Solace PubSub+ Connector for IBM MQ

Volumes

These are the supported directories for which volumes and bind mounts can be created:

Contents Container Path Optional Recommended
Permission

Spring /app/external/spring/config/ Required unless Read-Only
configuration files all properties are

defined using

environment

variables
Libraries /app/external/libs/ Required Read-Only
Classpath files /app/external/classpath/ Optional Read-Only
Output files /app/external/output/ Optional Read/Write

Volume: Spring Configuration Files

The Spring configuration files volume is used to add Spring configuration files (such as
application.yml, etc.), add a read-only volume, or bind mount to /app/external/spring/config/.

This directory follows the same semantics as Spring’s default config/ directory. That fact means
that this connector automatically finds and loads Spring configuration files from the following
locations when the connector starts:

1. The root of /app/external/spring/config/.

2. Immediate child directories of /app/external/spring/config/.

7 | Volumes

If you want configuration files for multiple, different connectors within the same
config directory for use in different environments (such as development,
production, etc.), we recommend that you use Spring Boot Profiles instead of child
directories. For example:
» Set up your configuration like this:
o /app/external/spring/config/application-prod.yml
o /app/external/spring/config/application-dev.yml
* Do not do this:
o /app/external/spring/config/prod/application.yml
o /app/external/spring/config/dev/application.yml
Child directories are intended to be used for merging configuration from multiple
sources of configuration properties. For more information and an example of

when you might want to use multiple child directories to compose your
application’s configuration, see the Spring Boot documentation.

solacee

https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.profile-specific
https://docs.spring.io/spring-boot/docs/current/reference/html/features.html#features.external-config.files.wildcard-locations

Solace PubSub+ Connector for IBM MQ

Volume: Libraries

The Libraries volume adds additional libraries, adds a read-only volume, or binds a mount to
/app/external/libs/.

This directory is provided as the location for the Java library dependencies (external JAR files) that
are either required or required only when using certain features of the Connector (such as
Prometheus libraries when using the metrics export to Prometheus feature in your Connector
configuration).

Solace does not provide the required JAR files due to licensing considerations. These JAR files are
required as part of the deployment of the connector for it to operate correctly.

See the documentation provided in the 1libs directory of the connector in the ZIP file for more
information.

Volume: Classpath Files

The Classpath Files volume adds a location for arbitrary files (not JAR libraries nor Spring Boot
configuration files), adds a read-only volume, or binds a mount to /app/external/classpath/.

This directory must not contain JAR files for libraries or Spring Boot configuration

o files, otherwise there is a risk of libraries not getting picked up during the
deployment of the connector and overwriting the connector’s internal
configuration.

Volume: Output Files

The Output Files volume is for some features that support writing output files, such as logging to a
file. To capture these, add a read/write volume or bind the mount to /app/external/output/
directory.

When using features that generates files, you must configure the features so that

o the files are generated to the /app/external/output/ directory. Generating files to
any other directory is not supported.

8 | Volumes solacee

Solace PubSub+ Connector for IBM MQ

Configuring the JVM

You can set the JDK_JAVA_OPTIONS environment variable on the container to configure the Java

Virtual Machine (JVM).

See the JDK documentation for more information.
This container is provided as an example and has been tested using:

(2
Q » Two active processors (specified using -XX:ActiveProcessorCount=2).

* A maximum heap memory of 2 GB (specified using -Xmx2048m).

Support

Support is offered best effort via our Solace Developer Community.

Premium support options are available, please Contact Solace.

9 | Configuring the JVM solacee

https://docs.oracle.com/en/java/javase/17/docs/specs/man/java.html#using-the-jdk_java_options-launcher-environment-variable
https://solace.community/
https://solace.com/contact-us

Solace PubSub+ Connector for IBM MQ
[d
License

This project is licensed under the Solace Community License, Version 1.0. - See the LICENSE file
under the container’s /licenses for details.

10 | License solacee

	Solace PubSub+ Connector for IBM MQ
	Table of Contents
	Preface
	Getting Started
	Prerequisites
	Usage
	Connecting to Services on the Host
	Configuring a Healthcheck

	Providing Configuration
	Ports
	Volumes
	Volume: Spring Configuration Files
	Volume: Libraries
	Volume: Classpath Files
	Volume: Output Files

	Configuring the JVM
	Support

	License

